化工学报 ›› 2023, Vol. 74 ›› Issue (5): 2228-2238.DOI: 10.11949/0438-1157.20230029
陈韶云1(), 徐东1, 陈龙1, 张禹1, 张远方1, 尤庆亮1, 胡成龙1(), 陈建2
收稿日期:
2023-01-11
修回日期:
2023-03-02
出版日期:
2023-05-05
发布日期:
2023-06-29
通讯作者:
胡成龙
作者简介:
陈韶云(1984—),女,博士,副教授,cescsy@jhun.edu.cn
基金资助:
Shaoyun CHEN1(), Dong XU1, Long CHEN1, Yu ZHANG1, Yuanfang ZHANG1, Qingliang YOU1, Chenglong HU1(), Jian CHEN2
Received:
2023-01-11
Revised:
2023-03-02
Online:
2023-05-05
Published:
2023-06-29
Contact:
Chenglong HU
摘要:
周期性阵列结构纳米材料广泛应用于材料化学、能源储存、光子学、分子传感、生物医学等领域。采用溶液法制备了平均直径为1.45 μm、单分散性较好的氨基化聚苯乙烯(aminated polystyrene,aPS)微球;以普通非导电性载玻片为支撑基板,利用旋转涂覆法,通过改变旋涂时间、旋转速度、aPS微球的固含量等,成功将aPS微球制备成单层规整排列的阵列结构。该阵列结构具有预期的单层结构,aPS微球呈现良好的周期性排列,整体结构可以看作是周期性排列的微球阵列。并以此作为合成模板,采用稀溶液合成法,将聚苯胺(polyaniline,PANI)原位生长在aPS微球阵列上,得到具有规整排列的PANI@aPS微球阵列。通过染料罗丹明6G(R6G)吸附实验发现,未氨基化的PS微球、aPS微球阵列,纯PANI和PANI@aPS微球阵列对R6G的饱和吸附量分别约为1.3、2.0、5.0和7.1 mg/g,表明PANI@aPS微球阵列对R6G具有较好的吸附性。与提拉膜等规整排列技术相比,该方法更为便捷,容易在一般实验室实现,可以为金属纳米粒子(Au和Ag)、无机化合物和导电聚合物的规整生长提供模板。
中图分类号:
陈韶云, 徐东, 陈龙, 张禹, 张远方, 尤庆亮, 胡成龙, 陈建. 单层聚苯胺微球阵列结构的制备及其吸附性能[J]. 化工学报, 2023, 74(5): 2228-2238.
Shaoyun CHEN, Dong XU, Long CHEN, Yu ZHANG, Yuanfang ZHANG, Qingliang YOU, Chenglong HU, Jian CHEN. Preparation and adsorption properties of monolayer polyaniline microsphere arrays[J]. CIESC Journal, 2023, 74(5): 2228-2238.
图2 采用常规滴涂法制备的PS微球SEM图及其粒径分布
Fig.2 SEM images and the particle size distribution of PS microspheres prepared on glass slides by conventional drop coating method
图8 普通载玻片、PS微球、aPS微球阵列和PANI@aPS微球阵列的紫外-可见光透过率和接触角
Fig.8 UV-Vis transmittance and contact angle of normal glass slide, PS microspheres, aPS microspheres array and PANI@aPS microspheres array
图9 PS微球、aPS微球阵列、纯PANI和PANI@aPS微球阵列对R6G的吸附曲线
Fig.9 Adsorption curve of PS microspheres, aPS microspheres array, pure PANI and PANI@aPS microsphere array for dye molecule R6G
1 | Hao Z S, Li N, Cao H J, et al. Modified Ag nanoparticles on the regular array structure to improve the optical properties[J]. Journal of Luminescence, 2022, 243: 118684. |
2 | Lin B, Yang G D, Wang L Z. Stacking-layer-number dependence of water adsorption in 3D ordered close-packed g-C3N4 nanosphere arrays for photocatalytic hydrogen evolution[J]. Angewandte Chemie, 2019, 58(14): 4587-4591. |
3 | Hoang S, Gao P X. Nanowire array structures for photocatalytic energy conversion and utilization: a review of design concepts, assembly and integration, and function enabling[J]. Advanced Energy Materials, 2016, 6(23): 1600683. |
4 | Zhang H, Liu Y, Shahidan M F S, et al. Direct assembly of vertically oriented, gold nanorod arrays[J]. Advanced Functional Materials, 2021, 31(6): 2006753. |
5 | Fu Y, Mo A C. A review on the electrochemically self-organized titania nanotube arrays: synthesis, modifications, and biomedical applications[J]. Nanoscale Research Letters, 2018, 13(1): 187. |
6 | Yang K, Yao X, Liu B W, et al. Metallic plasmonic array structures: principles, fabrications, properties, and applications[J]. Advanced Materials, 2021, 33(50): e2007988. |
7 | Yu M, Long Y Z, Sun B, et al. Recent advances in solar cells based on one-dimensional nanostructure arrays[J]. Nanoscale, 2012, 4(9): 2783-2796. |
8 | Choi T M, Lee G H, Kim Y S, et al. Photonic microcapsules containing single-crystal colloidal arrays with optical anisotropy[J]. Advanced Materials, 2019, 31(18): e1900693. |
9 | Li J, Bao R, Tao J, et al. Recent progress in flexible pressure sensor arrays: from design to applications[J]. Journal of Materials Chemistry C, 2018, 6(44): 11878-11892. |
10 | Chang H X, Yuan Y, Shi N L, et al. Electrochemical DNA biosensor based on conducting polyaniline nanotube array[J]. Analytical Chemistry, 2007, 79(13): 5111-5115. |
11 | Chen Y F. Nanofabrication by electron beam lithography and its applications: a review[J]. Microelectronic Engineering, 2015, 135: 57-72. |
12 | Wu T, Lin Y W. Surface-enhanced Raman scattering active gold nanoparticle/nanohole arrays fabricated through electron beam lithography[J]. Applied Surface Science, 2018, 435: 1143-1149. |
13 | Sloyan K, Melkonyan H, Apostoleris H, et al. A review of focused ion beam applications in optical fibers[J]. Nanotechnology, 2021, 32(47): 472004. |
14 | Li P, Chen S Y, Dai H F, et al. Recent advances in focused ion beam nanofabrication for nanostructures and devices: fundamentals and applications[J]. Nanoscale, 2021, 13(3): 1529-1565. |
15 | Huang J Y, Zhang K Q, Lai Y K. Fabrication, modification, and emerging applications of TiO 2 nanotube arrays by electrochemical synthesis: a review[J]. International Journal of Photoenergy, 2013, 2013: 1-19. |
16 | Wei W B, Bai F, Fan H Y. Oriented gold nanorod arrays: self-assembly and optoelectronic applications[J]. Angewandte Chemie, 2019, 58(35): 11956-11966. |
17 | Hanske C, Hill E H, Vila-Liarte D, et al. Solvent-assisted self-assembly of gold nanorods into hierarchically organized plasmonic mesostructures[J]. ACS Applied Materials & Interfaces, 2019, 11(12): 11763-11771. |
18 | Li Y, Duan G T, Liu G Q, et al. Physical processes-aided periodic micro/nanostructured arrays by colloidal template technique: fabrication and applications[J]. Chemical Society Reviews, 2013, 42(8): 3614-3627. |
19 | Doludenko I M, Volchkov I S, Turenko B A, et al. Electrical properties arrays of intersecting of nanowires obtained in the pores of track membranes[J]. Materials Chemistry and Physics, 2022, 287: 126285. |
20 | He G, Chen H J, Liu D, et al. Fabrication of various structures of nanostraw arrays and their applications in gene delivery[J]. Advanced Materials Interfaces, 2018, 5(10): 1701535. |
21 | Zhang H M, Zhou M, Zhao H P, et al. Ordered nanostructures arrays fabricated by anodic aluminum oxide (AAO) template-directed methods for energy conversion[J]. Nanotechnology, 2021, 32: 502006. |
22 | Wei Q L, Fu Y Q, Zhang G X, et al. Rational design of novel nanostructured arrays based on porous AAO templates for electrochemical energy storage and conversion[J]. Nano Energy, 2019, 55: 234-259. |
23 | Lin C H, Polisetty S, O’Brien L, et al. Size-tuned ZnO nanocrucible arrays for magnetic nanodot synthesis via atomic layer deposition-assisted block polymer lithography[J]. ACS Nano, 2015, 9(2): 1379-1387. |
24 | Kuila B K, Nandan B, Böhme M, et al. Vertically oriented arrays of polyaniline nanorods and their super electrochemical properties[J]. Chemical Communications, 2009(38): 5749-5751. |
25 | Kim J Y, Liu G C, Shim G Y, et al. Functionalized Zn@ZnO hexagonal pyramid array for dendrite-free and ultrastable zinc metal anodes[J]. Advanced Functional Materials, 2020, 30(36): 2004210. |
26 | Geng B, Yan F, Liu L N, et al. Ni/MoC heteronanoparticles encapsulated within nitrogen-doped carbon nanotube arrays as highly efficient self-supported electrodes for overall water splitting[J]. Chemical Engineering Journal, 2021, 406: 126815. |
27 | Zhou Y, Wang X X, Acauan L, et al. Ultrahigh-areal-capacitance flexible supercapacitor electrodes enabled by conformal P3MT on horizontally aligned carbon-nanotube arrays[J]. Advanced Materials, 2019, 31(30): e1901916. |
28 | Liu D F, Xiang Y J, Wu X C, et al. Periodic ZnO nanorod arrays defined by polystyrene microsphere self-assembled monolayers[J]. Nano Letters, 2006, 6(10): 2375-2378. |
29 | Kim D, Jang D, Lee H, et al. Two-dimensional non-close-packed arrays of polystyrene microspheres prepared by controlling the size of polystyrene microspheres[J]. Polymer, 2019, 185: 121938. |
30 | Chen S Y, Liu B, Zhang X Y, et al. Growth of polyaniline on TiO2 tetragonal prism arrays as electrode materials for supercapacitor[J]. Electrochimica Acta, 2019, 300: 373-379. |
31 | Peng S, Liu B, Zhang X Y, et al. Large-area polyaniline nanorod growth on a monolayer polystyrene nanosphere array as an electrode material for supercapacitors[J]. ACS Applied Energy Materials, 2021, 4(12): 14766-14777. |
32 | Wang Y, Xu S Q, Liu W F, et al. Facile fabrication of urchin-like polyaniline microspheres for electrochemical energy storage[J]. Electrochimica Acta, 2017, 254: 25-35. |
33 | Wang Y, Xu S Q, Cheng H, et al. Oriented growth of polyaniline nanofiber arrays onto the glass and flexible substrates using a facile method[J]. Applied Surface Science, 2018, 428: 315-321. |
34 | Liu B, Zhang X Y, Tian D, et al. In situ growth of oriented polyaniline nanorod arrays on the graphite flake for high-performance supercapacitors[J]. ACS Omega, 2020, 5(50): 32395-32402. |
35 | Chen S Y, Cheng H, Tian D, et al. Controllable synthesis, core-shell nanostructures, and supercapacitor performance of highly uniform polypyrrole/polyaniline nanospheres[J]. ACS Applied Energy Materials, 2021, 4(4): 3701-3711. |
36 | Tian D, Cheng H, Li Q, et al. The ordered polyaniline nanowires wrapped on the polypyrrole nanotubes as electrode materials for electrochemical energy storage[J]. Electrochimica Acta, 2021, 398: 139328. |
37 | Edwards H G M, Brown D R, Dale J A, et al. Raman spectroscopy of sulfonated polystyrene resins[J]. Vibrational Spectroscopy, 2000, 24(2): 213-224. |
38 | Hu C L, Chen X D, Chen J, et al. Observation of mutual diffusion of macromolecules in PS/PMMA binary films by confocal Raman microscopy[J]. Soft Matter, 2012, 8(17): 4780-4787. |
39 | Mikhailova S S, Mykhaylyk O M, Dorfman A M, et al. XPS study of finely dispersed iron powders modified by radiation-grafted acrylamide[J]. Surface and Interface Analysis, 2000, 29(8): 519-523. |
40 | Chen S Y, Hu C L, Zhang W H, et al. A self-assembling octahedral aggregate of poly(methyl methacrylate) nanospheres on a silver substrate[J]. ChemPlusChem, 2016, 81(2): 161-165. |
41 | Chowdhury A N, Jesmeen S R, Hossain M M. Removal of dyes from water by conducting polymeric adsorbent[J]. Polymers for Advanced Technologies, 2004, 15(11): 633-638. |
42 | Ayad M M, Abu El-Nasr A, Stejskal J. Kinetics and isotherm studies of methylene blue adsorption onto polyaniline nanotubes base/silica composite[J]. Journal of Industrial and Engineering Chemistry, 2012, 18(6): 1964-1969. |
[1] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[2] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[3] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[4] | 盛冰纯, 于建国, 林森. 铝基锂吸附剂分离高钠型地下卤水锂资源过程研究[J]. 化工学报, 2023, 74(8): 3375-3385. |
[5] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[6] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[7] | 陈吉, 洪泽, 雷昭, 凌强, 赵志刚, 彭陈辉, 崔平. 基于分子动力学的焦炭溶损反应及其机理研究[J]. 化工学报, 2023, 74(7): 2935-2946. |
[8] | 张澳, 罗英武. 低模量、高弹性、高剥离强度丙烯酸酯压敏胶[J]. 化工学报, 2023, 74(7): 3079-3092. |
[9] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[10] | 刘杰, 吴立盛, 李锦锦, 罗正鸿, 周寅宁. 含乙烯基胺酯键聚醚类可逆交联聚合物的制备及性能研究[J]. 化工学报, 2023, 74(7): 3051-3057. |
[11] | 蔡斌, 张效林, 罗倩, 党江涛, 左栗源, 刘欣梅. 导电薄膜材料的研究进展[J]. 化工学报, 2023, 74(6): 2308-2321. |
[12] | 龙臻, 王谨航, 任俊杰, 何勇, 周雪冰, 梁德青. 离子液体协同PVCap抑制天然气水合物生成实验研究[J]. 化工学报, 2023, 74(6): 2639-2646. |
[13] | 崔张宁, 胡紫璇, 吴雷, 周军, 叶干, 刘田田, 张秋利, 宋永辉. 可降解纤维素基材料的耐水性能研究进展[J]. 化工学报, 2023, 74(6): 2296-2307. |
[14] | 杨琴, 秦传鉴, 李明梓, 杨文晶, 赵卫杰, 刘虎. 用于柔性传感的双形状记忆MXene基水凝胶的制备及性能研究[J]. 化工学报, 2023, 74(6): 2699-2707. |
[15] | 王新悦, 王俊杰, 曹思贤, 王翠, 李灵坤, 吴宏宇, 韩静, 吴昊. 玻璃内包材界面修饰对机械应力诱导的单克隆抗体聚集体形成的影响[J]. 化工学报, 2023, 74(6): 2580-2588. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||