化工学报 ›› 2024, Vol. 75 ›› Issue (1): 190-196.DOI: 10.11949/0438-1157.20230735
钟东霖1,2(), 介素云1, 杜淼3, 潘鹏举1,2, 单国荣1,2(
)
收稿日期:
2023-07-14
修回日期:
2023-09-13
出版日期:
2024-01-25
发布日期:
2024-03-11
通讯作者:
单国荣
作者简介:
钟东霖(1998—),男,硕士研究生,22128143@zju.edu.cn
基金资助:
Donglin ZHONG1,2(), Suyun JIE1, Miao DU3, Pengju PAN1,2, Guorong SHAN1,2(
)
Received:
2023-07-14
Revised:
2023-09-13
Online:
2024-01-25
Published:
2024-03-11
Contact:
Guorong SHAN
摘要:
聚硅氧烷是应用广泛的一种特种有机硅材料,折射率是衡量聚硅氧烷性能的重要指标。应用基团贡献法建立了适用于聚苯基甲基硅氧烷体系的分子量-折射率模型,结合自由体积理论对模型进行了修正。修正后的模型能够根据分子量和温度有效地预测聚苯基甲基硅氧烷的折射率,相对误差在±0.2%范围内。根据修正后的模型阐述了分子量、温度对折射率的影响:折射率随着分子量的增大而升高,最终趋于一定值;折射率随着温度的升高明显下降。研究结果可为高折射率聚硅氧烷的设计与合成提供参考。
中图分类号:
钟东霖, 介素云, 杜淼, 潘鹏举, 单国荣. 聚苯基甲基硅氧烷分子量-折射率模型研究[J]. 化工学报, 2024, 75(1): 190-196.
Donglin ZHONG, Suyun JIE, Miao DU, Pengju PAN, Guorong SHAN. Study on molecular weight-refractive index model of polymethylphenylsiloxane[J]. CIESC Journal, 2024, 75(1): 190-196.
Group | Ri / (cm3·mol-1) | Ai / (cm3·mol-1) | 103Bi / (cm3·mol-1·K-1) | 105Ci / (cm3·mol-1·K-2) |
---|---|---|---|---|
C6H5 | 25.301 | 145.215 | -479.05 | 80.70 |
CH3 | 5.442 | 16.43 | 55.62 | 0 |
SiO | 7.740 | 41.93 | -142.30 | 13.76 |
表1 苯基、甲基、硅氧基的摩尔折射率、摩尔体积参数
Table 1 Molar refraction and molar volume parameters of phenyl, methyl and SiO group
Group | Ri / (cm3·mol-1) | Ai / (cm3·mol-1) | 103Bi / (cm3·mol-1·K-1) | 105Ci / (cm3·mol-1·K-2) |
---|---|---|---|---|
C6H5 | 25.301 | 145.215 | -479.05 | 80.70 |
CH3 | 5.442 | 16.43 | 55.62 | 0 |
SiO | 7.740 | 41.93 | -142.30 | 13.76 |
Molecular weight | Refractive index | |||
---|---|---|---|---|
30℃ | 40℃ | 50℃ | 60℃ | |
3058 | 1.5202 | 1.5168 | 1.5136 | 1.5098 |
5552 | 1.5336 | 1.5298 | 1.5269 | 1.5236 |
8264 | 1.5401 | 1.5361 | 1.5324 | 1.5286 |
10075 | 1.5415 | 1.5376 | 1.5340 | 1.5301 |
13794 | 1.5441 | 1.5409 | 1.5383 | 1.5347 |
18843 | 1.5460 | 1.5417 | 1.538 | 1.5345 |
20999 | 1.5464 | 1.5433 | 1.5408 | 1.5370 |
28253 | 1.5475 | 1.5437 | 1.5405 | 1.5366 |
46634 | 1.5495 | 1.5459 | 1.5418 | 1.5387 |
表2 聚苯基甲基硅氧烷的分子量和折射率
Table 2 Molecular weight and refractive index of polymethylphenylsiloxanes
Molecular weight | Refractive index | |||
---|---|---|---|---|
30℃ | 40℃ | 50℃ | 60℃ | |
3058 | 1.5202 | 1.5168 | 1.5136 | 1.5098 |
5552 | 1.5336 | 1.5298 | 1.5269 | 1.5236 |
8264 | 1.5401 | 1.5361 | 1.5324 | 1.5286 |
10075 | 1.5415 | 1.5376 | 1.5340 | 1.5301 |
13794 | 1.5441 | 1.5409 | 1.5383 | 1.5347 |
18843 | 1.5460 | 1.5417 | 1.538 | 1.5345 |
20999 | 1.5464 | 1.5433 | 1.5408 | 1.5370 |
28253 | 1.5475 | 1.5437 | 1.5405 | 1.5366 |
46634 | 1.5495 | 1.5459 | 1.5418 | 1.5387 |
Temperature/℃ | f |
---|---|
30 | 0.019 |
40 | 0.022 |
50 | 0.024 |
60 | 0.026 |
表3 不同温度下的f值
Table 3 Value of f under different temperatures
Temperature/℃ | f |
---|---|
30 | 0.019 |
40 | 0.022 |
50 | 0.024 |
60 | 0.026 |
Molecular weight | Refractive index | |||||||
---|---|---|---|---|---|---|---|---|
30℃ | 40℃ | 50℃ | 60℃ | |||||
Exp. | Pred. | Exp. | Pred. | Exp. | Pred. | Exp. | Pred. | |
6575 | 1.5377 | 1.5376 | 1.5346 | 1.5349 | 1.5311 | 1.5313 | 1.5283 | 1.5268 |
10163 | 1.5409 | 1.5410 | 1.5371 | 1.5384 | 1.5335 | 1.5349 | 1.5299 | 1.5303 |
12097 | 1.5428 | 1.5420 | 1.5394 | 1.5395 | 1.5359 | 1.5359 | 1.5321 | 1.5314 |
14907 | 1.5439 | 1.5430 | 1.5402 | 1.5405 | 1.5360 | 1.5369 | 1.5328 | 1.5324 |
26201 | 1.5470 | 1.5449 | 1.5431 | 1.5424 | 1.5392 | 1.5389 | 1.5359 | 1.5344 |
表4 折射率预测值与实验值的比较
Table 4 Comparisons between predicted and experimental values of refractive index
Molecular weight | Refractive index | |||||||
---|---|---|---|---|---|---|---|---|
30℃ | 40℃ | 50℃ | 60℃ | |||||
Exp. | Pred. | Exp. | Pred. | Exp. | Pred. | Exp. | Pred. | |
6575 | 1.5377 | 1.5376 | 1.5346 | 1.5349 | 1.5311 | 1.5313 | 1.5283 | 1.5268 |
10163 | 1.5409 | 1.5410 | 1.5371 | 1.5384 | 1.5335 | 1.5349 | 1.5299 | 1.5303 |
12097 | 1.5428 | 1.5420 | 1.5394 | 1.5395 | 1.5359 | 1.5359 | 1.5321 | 1.5314 |
14907 | 1.5439 | 1.5430 | 1.5402 | 1.5405 | 1.5360 | 1.5369 | 1.5328 | 1.5324 |
26201 | 1.5470 | 1.5449 | 1.5431 | 1.5424 | 1.5392 | 1.5389 | 1.5359 | 1.5344 |
1 | Shi J F, Zhao N, Xia S, et al. Phosphazene superbase catalyzed ring-opening polymerization of cyclotetrasiloxane toward copolysiloxanes with high diphenyl siloxane content[J]. Polymer Chemistry, 2019, 10(17): 2126-2133. |
2 | Wolf M P, Salieb-Beugelaar G B, Hunziker P. PDMS with designer functionalities—properties, modifications strategies and applications[J]. Progress in Polymer Science, 2018, 83: 97-134. |
3 | Maiti A, Small W, Kroonblawd M P, et al. Constitutive model of radiation aging effects in filled silicone elastomers under strain[J]. The Journal of Physical Chemistry B, 2021, 125(35): 10047-10057. |
4 | Razavi M, Primavera R, Vykunta A, et al. Silicone-based bioscaffolds for cellular therapies[J]. Materials Science and Engineering: C, 2021, 119: 111615. |
5 | Zhang X S, Chen Y J, Hu J L. Recent advances in the development of aerospace materials[J]. Progress in Aerospace Sciences, 2018, 97: 22-34. |
6 | Zalewski K, Chyłek Z, Trzciński W A. A review of polysiloxanes in terms of their application in explosives[J]. Polymers, 2021, 13(7): 1080. |
7 | Tian H Y, Tang Z H, Zhuang X L, et al. Biodegradable synthetic polymers: preparation, functionalization and biomedical application[J]. Progress in Polymer Science, 2012, 37(2): 237-280. |
8 | Pan Z Q, Cheng Y, Zhang Z. Synthesis of high refractive index silicone LED encapsulation with ultra-high hardness[J]. Silicon, 2022, 14(13): 7863-7870. |
9 | Muthamil S T, Mondal T. Radiation curable polysiloxane: synthesis to applications[J]. Soft Matter, 2021, 17(26): 6284-6297. |
10 | Meier D, Huch V, Kickelbick G. Aryl-group substituted polysiloxanes with high-optical transmission, thermal stability, and refractive index[J]. Journal of Polymer Science, 2021, 59(20): 2265-2283. |
11 | Lay M, Ramli M R, Ramli R, et al. Crosslink network and phenyl content on the optical, hardness,and thermal aging of PDMS LED encapsulant[J]. Journal of Applied Polymer Science, 2019, 136(34): 47895. |
12 | Tan C Z. Dependence of the refractive index on density, temperature and the wavelength of the incident light[J]. The European Physical Journal B, 2021, 94(7): 139. |
13 | Tao Z. Effect of magnetic field of light on refractive index[J]. Chinese Physics, 2004, 13(8): 1358-1364. |
14 | Gharagheizi F, Ilani-Kashkouli P, Kamari A, et al. A chemical structure based model for the estimation of refractive indices of organic compounds[J]. Fluid Phase Equilibria, 2014, 384: 1-13. |
15 | Xu J, Chen B, Zhang Q J, et al. Prediction of refractive indices of linear polymers by a four-descriptor QSPR model[J]. Polymer, 2004, 45: 8651-8659. |
16 | Khan P M, Rasulev B, Roy K. QSPR modeling of the refractive index for diverse polymers using 2D descriptors[J]. ACS Omega, 2018, 3(10): 13374-13386. |
17 | Hamadanian M, Keshavarz M H, Shahrousvand E. The reliable predicting refractive index for diverse polymers only from structural moieties in repeating unit structures[J]. Materials Today Communications, 2023, 35: 105823. |
18 | Jabeen F, Chen M, Rasulev B, et al. Refractive indices of diverse data set of polymers: a computational QSPR based study[J]. Computational Materials Science, 2017, 137: 215-224. |
19 | Yang C J, Jenekhe S A. Group contribution to molar refraction and refractive index of conjugated polymers[J]. Chemistry of Materials, 1995, 7(7): 1276-1285. |
20 | Cai C, Marsh A, Zhang Y H, et al. Group contribution approach to predict the refractive index of pure organic components in ambient organic aerosol[J]. Environmental Science & Technology, 2017, 51(17): 9683-9690. |
21 | Gharagheizi F, Ilani-Kashkouli P, Kamari A, et al. Group contribution model for the prediction of refractive indices of organic compounds[J]. Journal of Chemical & Engineering Data, 2014, 59(6): 1930-1943. |
22 | 程大海, 伍川, 董红, 等. 原子贡献法估算硅烷及硅氧烷的摩尔折射度[J]. 杭州师范大学学报(自然科学版), 2013, 12(5): 395-403. |
Cheng D H, Wu C, Dong H, et al. The molar refraction estimation of silanes and siloxanes by atom contribution method[J]. Journal of Hangzhou Normal University(Natural Science Edition), 2013, 12(5): 395-403. | |
23 | 程大海, 伍川, 董红, 等. 基团贡献法预测硅烷及硅氧烷的折射率[J]. 杭州师范大学学报(自然科学版), 2014, 13(2): 113-122. |
Cheng D H, Wu C, Dong H, et al. Prediction for the refractive index of silane and siloxane by group contribution method[J]. Journal of Hangzhou Normal University (Natural Science Edition), 2014, 13(2): 113-122. | |
24 | Katritzky A R, Sild S, Karelson M. General quantitative structure-property relationship treatment of the refractive index of organic compounds[J]. Journal of Chemical Information and Computer Sciences, 1998, 38(5): 840-844. |
25 | Kragh H. The Lorenz-Lorentz formula: origin and early history[J]. Substantia. An International Journal of the History of Chemistry, 2018, 2(2): 7-18. |
26 | 蒋立纯, 方仕江. 具有高折光率的苯基乙烯基硅油的合成与表征[J]. 化工新型材料, 2014, 42(2): 136-138, 148. |
Jiang L C, Fang S J. Synthesis and characterization of methyl phenyl vinyl silicone oil with high refractive index[J]. New Chemical Materials, 2014, 42(2): 136-138, 148. | |
27 | 李谷, 符若文, 冯开才. 高分子物理[M]. 北京: 化学工业出版社, 2005. |
Li G, Fu R W, Feng K C. Polymer Physics[M]. Beijing: Chemical Industry Press, 2005. | |
28 | Ihmels E C, Gmehling J. Extension and revision of the group contribution method GCVOL for the prediction of pure compound liquid densities[J]. Industrial & Engineering Chemistry Research, 2003, 42(2): 408-412. |
29 | Wang Y M, Cao R W, Wang M H, et al. Design and synthesis of phenyl silicone rubber with functional epoxy groups through anionic copolymerization and subsequent epoxidation[J]. Polymer, 2020, 186: 122077. |
30 | Fuchise K, Igarashi M, Sato K, et al. Organocatalytic controlled/living ring-opening polymerization of cyclotrisiloxanes initiated by water with strong organic base catalysts[J]. Chemical Science, 2018, 9(11): 2879-2891. |
31 | 周安安, 单国荣, 黄志明, 等. 羟基聚硅氧烷一步合成的速率研究[J]. 化学反应工程与工艺, 2004, 20(1): 53-58. |
Zhou A A, Shan G R, Huang Z M, et al. Study on the rate for preparing hydroxy terminated polydimethylsiloxane in one-step process in the presence of water[J]. Chemical Reaction Engineering and Technology, 2004, 20(1): 53-58. | |
32 | 夏爽, 刘小兵, 赵娜, 等. 环硅氧烷阴离子开环均聚及共聚研究进展[J]. 高分子学报, 2018(12): 1482-1492. |
Xia S, Liu X B, Zhao N, et al. Progress in anionic ring-opening homo/co-polymerization of cyclosiloxanes[J]. Acta Polymerica Sinica, 2018(12): 1482-1492. | |
33 | Doolittle A K. Studies in Newtonian flow(Ⅱ): The dependence of the viscosity of liquids on free-space[J]. Journal of Applied Physics, 1951, 22(8): 1471-1475. |
34 | 郑强, 林宇, 叶一兰, 等. 《高分子物理》教学中WLF方程的系数求解与分析[J]. 高分子通报, 2010(6): 99-105. |
Zheng Q, Lin Y, Ye Y L, et al. The solution and analysis on parameters of WLF equation in teaching the course Polymer Physics[J]. Polymer Bulletin, 2010(6): 99-105. |
[1] | 麻雪怡, 刘克勤, 胡激江, 姚臻. POE溶液聚合反应器内混合与反应过程的CFD研究[J]. 化工学报, 2024, 75(1): 322-337. |
[2] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[3] | 连梦雅, 谈莹莹, 王林, 陈枫, 曹艺飞. 地下水预热新风一体化热泵空调系统制热性能研究[J]. 化工学报, 2023, 74(S1): 311-319. |
[4] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及![]() |
[5] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[6] | 王浩, 王振雷. 基于自适应谱方法的裂解炉烧焦模型化简策略[J]. 化工学报, 2023, 74(9): 3855-3864. |
[7] | 于旭东, 李琪, 陈念粗, 杜理, 任思颖, 曾英. 三元体系KCl + CaCl2 + H2O 298.2、323.2及348.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(8): 3256-3265. |
[8] | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
[9] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
[10] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
[11] | 刘春雨, 周桓宇, 马跃, 岳长涛. CaO调质含油污泥干燥特性及数学模型[J]. 化工学报, 2023, 74(7): 3018-3027. |
[12] | 郭雨莹, 敬加强, 黄婉妮, 张平, 孙杰, 朱宇, 冯君炫, 陆洪江. 稠油管道水润滑减阻及压降预测模型修正[J]. 化工学报, 2023, 74(7): 2898-2907. |
[13] | 刘起超, 周云龙, 陈聪. 起伏振动垂直上升管气液两相流截面含气率分析与计算[J]. 化工学报, 2023, 74(6): 2391-2403. |
[14] | 毕恩哲, 李双喜, 沙廉翔, 刘登宇, 陈凯放. 高温动压涨圈密封结构参数多目标优化分析[J]. 化工学报, 2023, 74(6): 2565-2579. |
[15] | 李艳辉, 丁邵明, 白周央, 张一楠, 于智红, 邢利梅, 高鹏飞, 王永贞. 非常规服役超临界锅炉的微纳尺度腐蚀动力学模型建立及应用[J]. 化工学报, 2023, 74(6): 2436-2446. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 215
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 265
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||