化工学报 ›› 2024, Vol. 75 ›› Issue (7): 2486-2496.DOI: 10.11949/0438-1157.20240285
收稿日期:
2024-03-11
修回日期:
2024-04-27
出版日期:
2024-07-25
发布日期:
2024-08-09
通讯作者:
韩志敏
作者简介:
韩志敏(1988—),男,博士,副教授,hanzm@neepu.edu.cn
基金资助:
Zhimin HAN(), Jiang LI, Zeqi CHEN, Wei LIU, Zhiming XU
Received:
2024-03-11
Revised:
2024-04-27
Online:
2024-07-25
Published:
2024-08-09
Contact:
Zhimin HAN
摘要:
换热器工作时介质中往往含有细小杂质粒子,容易沉积在通道中形成颗粒污垢。将传统脉动流与纵向涡发生器相结合,采用数值模拟方法对光滑通道、脉动流通道、纵向涡发生器通道以及脉动流结合纵向涡发生器通道的颗粒污垢特性进行对比分析,并且详细分析了脉动流结合纵向涡发生器通道中6种不同纵向涡发生器的影响。结果表明,相较于光滑通道,脉动流通道与纵向涡发生器通道的污垢热阻分别减小17%与22%,而脉动流结合纵向涡发生器通道能够减小45%,说明二者结合后的抑垢效果更好。对比脉动流结合6种不同纵向涡发生器发现相同类型下弯曲纵向涡发生器的抑垢效果优于未弯曲纵向涡发生器,通过与脉动流通道的污垢热阻渐近值对比发现抑垢效果由低到高为三角形12.8%、弯曲三角形14.7%、梯形22.0%、弯曲梯形23.8%、矩形29.4%、弯曲矩形33.0%,其中弯曲矩形纵向涡发生器的抑垢效果最好。
中图分类号:
韩志敏, 李江, 陈则齐, 刘威, 徐志明. 脉动流通道内不同纵向涡发生器的颗粒污垢特性[J]. 化工学报, 2024, 75(7): 2486-2496.
Zhimin HAN, Jiang LI, Zeqi CHEN, Wei LIU, Zhiming XU. Particulate fouling characteristics of different longitudinal vortex generators in pulsating flow channel[J]. CIESC Journal, 2024, 75(7): 2486-2496.
参数 | 符号 | 数值 |
---|---|---|
通道长度/mm | L | 1000 |
通道高度/mm | H | 20 |
通道宽度/mm | W | 40 |
纵向涡发生器横向间距/mm | D | 8 |
纵向涡发生器纵向间距/mm | L2 | 180 |
纵向涡发生器长边高度/mm | a | 3 |
纵向涡发生器短边高度/mm | c | 1.5 |
纵向涡发生器长度/mm | b | 6 |
纵向涡发生器攻角/(°) | θ | 90 |
纵向涡发生器排数/mm | N | 5 |
进口段距离/mm | L1 | 140 |
表1 物理模型对应几何参数
Table 1 Corresponding geometric parameters of physical model
参数 | 符号 | 数值 |
---|---|---|
通道长度/mm | L | 1000 |
通道高度/mm | H | 20 |
通道宽度/mm | W | 40 |
纵向涡发生器横向间距/mm | D | 8 |
纵向涡发生器纵向间距/mm | L2 | 180 |
纵向涡发生器长边高度/mm | a | 3 |
纵向涡发生器短边高度/mm | c | 1.5 |
纵向涡发生器长度/mm | b | 6 |
纵向涡发生器攻角/(°) | θ | 90 |
纵向涡发生器排数/mm | N | 5 |
进口段距离/mm | L1 | 140 |
1 | 李文晓. 能源现状及某些重要战略对策解析[J]. 化工管理, 2021(10): 13-14. |
Li W X. Analysis of energy status and some important strategic countermeasures[J]. Chemical Enterprise Management, 2021(10): 13-14. | |
2 | Steinhagen R, Müller-Steinhagen H, Maani K. Problems and costs due to heat exchanger fouling in new zealand industries[J]. Heat Transfer Engineering, 1993, 14(1): 19-30. |
3 | 彭德其, 张寓川, 武洋, 等. 换热管内插螺旋阻垢性能及污垢微观特征[J]. 化工学报, 2023, 74(10): 4129-4139. |
Peng D Q, Zhang Y C, Wu Y, et al. Scale-resisting properties and microscopic characteristics of the spiral insert of heat exchange tube[J]. CIESC Journal, 2023, 74(10): 4129-4139. | |
4 | Shemer L, Wygnanski I, Kit E. Pulsating flow in a pipe[J]. Journal of Fluid Mechanics, 1985, 153: 313-337. |
5 | Ye Q H, Zhang Y H, Wei J J. A comprehensive review of pulsating flow on heat transfer enhancement[J]. Applied Thermal Engineering, 2021, 196: 117275. |
6 | 黄其, 王勋廷, 杨志超, 等. 有序涡旋对三角槽道脉动流强化传热的影响[J]. 化工学报, 2016, 67(9): 3616-3624. |
Huang Q, Wang X T, Yang Z C, et al. Influence of vortex on heat transfer enhancement in triangular grooved channel by pulsating flow[J]. CIESC Journal, 2016, 67(9): 3616-3624. | |
7 | Zontul H, Şahin B. Experimental investigation of convective heat transfer performance and hydrodynamics of pulsating flow through the rectangular grooved channel[J]. Experimental Thermal and Fluid Science, 2023, 141: 110796. |
8 | Jarrahi M, Castelain C, Peerhossaini H. Secondary flow patterns and mixing in laminar pulsating flow through a curved pipe[J]. Experiments in Fluids, 2011, 50(6): 1539-1558. |
9 | Bennett C A. A theory describing sedimentation particulate fouling thresholds inside heat exchanger tubes[J]. Heat Transfer Engineering, 2016, 37(5): 468-474. |
10 | Saini P, Dhar A, Powar S. Performance enhancement of fin and tube heat exchanger employing curved trapezoidal winglet vortex generator with circular punched holes[J]. International Journal of Heat and Mass Transfer, 2023, 209: 124142. |
11 | 尚灵祎, 吴峰, 马晓迅. 带纵向涡发生器喷动床内颗粒流动特性PIV实验[J]. 化工学报, 2018, 69(5): 1923-1930. |
Shang L Y, Wu F, Ma X X. Experimental investigation on particle flow characteristics in spouted bed with longitudinal vortex generator[J]. CIESC Journal, 2018, 69(5): 1923-1930. | |
12 | 张晓蒙, 马丹丹, 夏国栋. 局部加密的正弦波纹微通道强化传热的数值研究[J]. 东北电力大学学报, 2021, 41(4): 43-51. |
Zhang X M, Ma D D, Xia G D. Numerical study of enhanced heat transfer withlocally denser sinusoidal wavy microchannels[J]. Journal of Northeast Electric Power University, 2021, 41(4): 43-51. | |
13 | Sun Z Q, Chen Q, Zheng N B. Experimental and numerical studies of intensified turbulent heat transfer in round pipes with curved wing vortex generators[J]. International Journal of Heat and Mass Transfer, 2021, 180: 121823. |
14 | Ji J D, Chen W Q, Gao R M, et al. Research on vibration and heat transfer in heat exchanger with vortex generator[J]. Journal of Thermophysics and Heat Transfer, 2020, 35(1): 164-170. |
15 | 唐新宜, 朱冬生, 陈宏. 内插梯形扰流片的矩形通道内涡流和传热特性[J]. 化工学报, 2012, 63(1): 71-83. |
Tang X Y, Zhu D S, Chen H. Vortical flow and heat transfer characteristics in rectangular channel with trapezoidal tab[J]. CIESC Journal, 2012, 63(1): 71-83. | |
16 | Hasan B O, Nathan G J, Ashman P J, et al. The use of turbulence generators to mitigate crystallization fouling under cross flow conditions[J]. Desalination, 2012, 288: 108-117. |
17 | Zhao X B, Tang G H, Shi Y T, et al. Experimental study of heat transfer and pressure drop for H-type finned oval tube with longitudinal vortex generators and dimples under flue gas[J]. Heat Transfer Engineering, 2018, 39(7/8): 608-616. |
18 | Xu Z M, Han Z M, Wang J T, et al. Numerical simulation of CaSO4 crystallization fouling in a rectangular channel with vortex generators[J]. International Communications in Heat and Mass Transfer, 2019, 101: 42-50. |
19 | Liu H X, Yang F X, Tan H Z, et al. Experimental and numerical investigation on the structure characteristics of vortex generators affecting particle agglomeration[J]. Powder Technology, 2020, 362: 805-816. |
20 | Xu Z M, Cheng Y L, Han Z M, et al. Influence of size of tetrahedral vortex generators on characteristics of MgO particulate fouling[J]. International Journal of Thermophysics, 2019, 40(4): 40. |
21 | Li X L, Wang S Q, Yang D L, et al. Thermal-hydraulic and fouling performances of enhanced double H-type finned tubes for residual heat recovery[J]. Applied Thermal Engineering, 2021, 189: 116724. |
22 | Han Z M, Xu Z M, Yu X Y. CFD modeling for prediction of particulate fouling of heat transfer surface in turbulent flow[J]. International Journal of Heat and Mass Transfer, 2019, 144: 118428. |
23 | Guha A. Transport and deposition of particles in turbulent and laminar flow[J]. Annual Review of Fluid Mechanics, 2008, 40: 311-341. |
24 | Johansen S T. The deposition of particles on vertical walls[J]. International Journal of Multiphase Flow, 1991, 17(3): 355-376. |
25 | Friedlander S K, Johnstone H F. Deposition of suspended particles from turbulent gas streams[J]. Industrial & Engineering Chemistry, 1957, 49(7): 1151-1156. |
26 | Wang F L, He Y L, Tong Z X, et al. Real-time fouling characteristics of a typical heat exchanger used in the waste heat recovery systems[J]. International Journal of Heat and Mass Transfer, 2017, 104: 774-786. |
27 | Brahim F, Augustin W, Bohnet M. Numerical simulation of the fouling process[J]. International Journal of Thermal Sciences, 2003, 42(3): 323-334. |
28 | Xu Z M, Fan H B, Han Z M. The comparison between integral and local calculation methods on the simulation of crystallization fouling[J]. International Journal of Thermal Sciences, 2022, 171: 107252. |
29 | 刘有昌, 孙晓君. 磁化水抑垢机理的研究[J]. 哈尔滨工业大学学报, 2000, 32(1): 86-90, 94. |
Liu Y C, Sun X J. Restraint of scale formation by magnetized water and its mechanism[J]. Journal of Harbin Institute of Technology, 2000, 32(1): 86-90, 94. | |
30 | Nandi T K, Chattopadhyay H. Numerical investigations of simultaneously developing flow in wavy microchannels under pulsating inlet flow condition[J]. International Communications in Heat and Mass Transfer, 2013, 47: 27-31. |
31 | Zhou G B, Ye Q L. Experimental investigations of thermal and flow characteristics of curved trapezoidal winglet type vortex generators[J]. Applied Thermal Engineering, 2012, 37: 241-248. |
32 | Wang T S, Chen Y S. Unified Navier-Stokes flowfield and performance analysis of liquid rocket engines[J]. Journal of Propulsion and Power, 1993, 9(5): 678-685. |
33 | Shu J I, Wang Y, Qian Y, et al. Analysis of the effect of shoulder cleaning on particle migration within ballast based on a coupled CFD-DEM approach[J]. Transportation Geotechnics, 2022, 37: 100855. |
34 | Naphon P, Wiriyasart S. Pulsating flow and magnetic field effects on the convective heat transfer of TiO2-water nanofluids in helically corrugated tube[J]. International Journal of Heat and Mass Transfer, 2018, 125: 1054-1060. |
35 | Han Z M, Xu Z M. Experimental and numerical investigation on particulate fouling characteristics of vortex generators with a hole[J]. International Journal of Heat and Mass Transfer, 2020, 148: 119130. |
36 | Sung H J, Hwang K S, Hyun J M. Experimental study on mass transfer from a circular cylinder in pulsating flow[J]. International Journal of Heat and Mass Transfer, 1994, 37(15): 2203-2210. |
37 | Park H G, Gharib M. Experimental study of heat convection from stationary and oscillating circular cylinder in cross flow[J]. Journal of Heat Transfer, 2001, 123(1): 51-62. |
38 | Förster M, Augustin W, Bohnet M. Influence of the adhesion force crystal/heat exchanger surface on fouling mitigation[J]. Chemical Engineering and Processing: Process Intensification, 1999, 38(4/5/6): 449-461. |
[1] | 方立昌, 李梓龙, 陈博, 苏政, 贾莉斯, 王智彬, 陈颖. 基于相变微胶囊悬浮液的芯片阵列冷却特性研究[J]. 化工学报, 2024, 75(7): 2455-2464. |
[2] | 卢飞, 鲁波娜, 许光文. 气固微型流化床反应分析仪的理想流型判据分析[J]. 化工学报, 2024, 75(6): 2201-2213. |
[3] | 黄斌, 丰生杰, 傅程, 张威. 液滴撞击单丝铺展特性的数值研究[J]. 化工学报, 2024, 75(6): 2233-2242. |
[4] | 霍宗伟, 牛亚宾, 潘艳秋. 油水膜分离中高黏度油滴行为研究和影响因素分析[J]. 化工学报, 2024, 75(6): 2262-2273. |
[5] | 李娟, 曹耀文, 朱章钰, 石雷, 李佳. 仿生正形尾鳍结构微通道流动与传热特性数值研究及结构优化[J]. 化工学报, 2024, 75(5): 1802-1815. |
[6] | 李静, 张方芳, 王帅帅, 徐建华, 张朋远. 凹腔结构对正丁烷部分预混火焰可燃极限的影响[J]. 化工学报, 2024, 75(5): 2081-2090. |
[7] | 谢磊, 徐永生, 林梅. 不同截面肋柱-软尾结构单相流动传热比较[J]. 化工学报, 2024, 75(5): 1787-1801. |
[8] | 王文雅, 张玮, 楼小玲, 钟若菲, 陈冰冰, 贠军贤. 纳米纤维素嵌合型晶胶微球的多微管成形与模拟[J]. 化工学报, 2024, 75(5): 2060-2071. |
[9] | 王金山, 王世学, 朱禹. 冷却表面温差对高温质子交换膜燃料电池性能的影响[J]. 化工学报, 2024, 75(5): 2026-2035. |
[10] | 李怡菲, 董新宇, 王为术, 刘璐, 赵一璠. 微肋板表面干冰升华喷雾冷却传热数值模拟[J]. 化工学报, 2024, 75(5): 1830-1842. |
[11] | 张文焱, 刘浩, 宋伟龙, 赵频, 王新华. 不同粒径UiO-66混掺改性TFN-FO膜的构建及性能评价[J]. 化工学报, 2024, 75(5): 1920-1928. |
[12] | 刘帆, 张芫通, 陶成, 胡成玉, 杨小平, 魏进家. 歧管式射流微通道液冷散热性能[J]. 化工学报, 2024, 75(5): 1777-1786. |
[13] | 申州洋, 薛康, 刘青, 史成香, 邹吉军, 张香文, 潘伦. 吸热型纳米流体燃料研究进展[J]. 化工学报, 2024, 75(4): 1167-1182. |
[14] | 吉笑盈, 郑园, 李晓鹏, 杨振, 张维, 邱诗蕊, 张倩颖, 罗沧海, 孙东鹏, 陈东, 李东亮. 微流控可控制备液滴、颗粒和胶囊及其应用[J]. 化工学报, 2024, 75(4): 1455-1468. |
[15] | 谷世良, 谭博仁, 程全中, 姚玮洁, 董志鹏, 许峰, 王勇. 轴流泵式混合室内水力学特征的数值模拟[J]. 化工学报, 2024, 75(3): 815-822. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||