化工学报 ›› 2024, Vol. 75 ›› Issue (10): 3705-3717.DOI: 10.11949/0438-1157.20240441
收稿日期:
2024-04-23
修回日期:
2024-06-14
出版日期:
2024-10-25
发布日期:
2024-11-04
通讯作者:
杨富鑫
作者简介:
孙琼(2000—),女,硕士研究生,sq7777@stu.xjtu.edu.cn
基金资助:
Qiong SUN(), Fuxin YANG(
), Houzhang TAN, Xiaopo WANG
Received:
2024-04-23
Revised:
2024-06-14
Online:
2024-10-25
Published:
2024-11-04
Contact:
Fuxin YANG
摘要:
开发新型吸收剂是碳捕集的重要研究方向。低共熔溶剂(DES)是由两种或多种化合物通过氢键结合的混合物,被视为一种具有潜力的绿色溶剂。以氯化胆碱/尿素(ChCl/urea)(摩尔比1∶2)、氯化胆碱/甘油(ChCl/Gly)(1∶2)和氯化胆碱/乙二醇(ChCl/EG)(1∶2)作为吸收剂,基于Aspen Plus建立DES的热力学模型,回归汽液相平衡等物性相关参数,使用COAMO-SAC模型预测N2、O2在DES中的溶解度并构建CO2捕集工艺流程,研究吸收压力、吸收温度、塔板数以及CO2浓度对捕集系统的影响。结果表明,CO2捕集率为90%、CO2纯度为90%的前提下,ChCl/urea(1∶2)、ChCl/Gly(1∶2)、ChCl/EG(1∶2)的再生能耗比胺溶液捕集系统分别降低35.17%、35.00%、15.28%。综合考虑3种DES的再生能耗、吸收剂需求量和吸收剂损失量,ChCl/Gly(1∶2)最具应用前景。相关研究可为DES工业捕集CO2的可行性提供一定参考。
中图分类号:
孙琼, 杨富鑫, 谭厚章, 王晓坡. 低共熔溶剂捕集烟气CO2模拟研究[J]. 化工学报, 2024, 75(10): 3705-3717.
Qiong SUN, Fuxin YANG, Houzhang TAN, Xiaopo WANG. Simulation study of CO2 capture from flue gas by deep eutectic solvent[J]. CIESC Journal, 2024, 75(10): 3705-3717.
DES | M/(g·mol-1) | Tb/K | Tc/K | pc/MPa | Vc/(cm3·mol-1) | ω |
---|---|---|---|---|---|---|
ChCl/urea(1∶2) | 86.58 | 445.6 | 644.4 | 4.935 | 254.37 | 0.661 |
ChCl/Gly(1∶2) | 107.93 | 515.4 | 680.67 | 3.306 | 315.17 | 1.251 |
ChCl/EG(1∶2) | 87.92 | 439.0 | 602.0 | 4.039 | 259.67 | 0.952 |
表1 DES临界参数
Table 1 Critical properties for DES
DES | M/(g·mol-1) | Tb/K | Tc/K | pc/MPa | Vc/(cm3·mol-1) | ω |
---|---|---|---|---|---|---|
ChCl/urea(1∶2) | 86.58 | 445.6 | 644.4 | 4.935 | 254.37 | 0.661 |
ChCl/Gly(1∶2) | 107.93 | 515.4 | 680.67 | 3.306 | 315.17 | 1.251 |
ChCl/EG(1∶2) | 87.92 | 439.0 | 602.0 | 4.039 | 259.67 | 0.952 |
物性 | 方程 | DES | 参数 | 文献 | ||
---|---|---|---|---|---|---|
C1 | C2 | C3 | ||||
液体摩尔体积 | ChCl/urea(1∶2) | 0.06358 | 2.427×10-5 | 1.624×10-8 | [ | |
ChCl/Gly(1∶2) | 0.07949 | 3.225×10-5 | 1.667×10-8 | 本文 本文 | ||
ChCl/EG(1∶2) | 0.06747 | 3.545×10-5 | 8.419×10-9 | |||
黏度 | ChCl/urea(1∶2) | -443.700 | 2.667×104 | 62.14 | [ | |
ChCl/Gly(1∶2) | -275.024 | 1.719×104 | 37.96 | 本文 本文 | ||
ChCl/EG(1∶2) | -156.309 | 9.916×103 | 21.03 | |||
摩尔热容 | ChCl/urea(1∶2) | 117.300 | 0.2085 | 1.679×10-12 | [ | |
ChCl/Gly(1∶2) | 327.583 | -0.2293 | 2.914×10-4 | 本文 本文 | ||
ChCl/EG(1∶2) | 131.329 | 0.4274 | 9.997×10-4 | |||
表面张力 | ChCl/urea(1∶2) | 0.09244 | 0.6043 | 0 | [ | |
ChCl/Gly(1∶2) | 0.06609 | 0.3988 | -3.670×10-5 | 本文 本文 | ||
ChCl/EG(1∶2) | 0.06780 | 0.3635 | -0.1384 |
表2 DES物性参数
Table 2 Thermophysical parameters for DES
物性 | 方程 | DES | 参数 | 文献 | ||
---|---|---|---|---|---|---|
C1 | C2 | C3 | ||||
液体摩尔体积 | ChCl/urea(1∶2) | 0.06358 | 2.427×10-5 | 1.624×10-8 | [ | |
ChCl/Gly(1∶2) | 0.07949 | 3.225×10-5 | 1.667×10-8 | 本文 本文 | ||
ChCl/EG(1∶2) | 0.06747 | 3.545×10-5 | 8.419×10-9 | |||
黏度 | ChCl/urea(1∶2) | -443.700 | 2.667×104 | 62.14 | [ | |
ChCl/Gly(1∶2) | -275.024 | 1.719×104 | 37.96 | 本文 本文 | ||
ChCl/EG(1∶2) | -156.309 | 9.916×103 | 21.03 | |||
摩尔热容 | ChCl/urea(1∶2) | 117.300 | 0.2085 | 1.679×10-12 | [ | |
ChCl/Gly(1∶2) | 327.583 | -0.2293 | 2.914×10-4 | 本文 本文 | ||
ChCl/EG(1∶2) | 131.329 | 0.4274 | 9.997×10-4 | |||
表面张力 | ChCl/urea(1∶2) | 0.09244 | 0.6043 | 0 | [ | |
ChCl/Gly(1∶2) | 0.06609 | 0.3988 | -3.670×10-5 | 本文 本文 | ||
ChCl/EG(1∶2) | 0.06780 | 0.3635 | -0.1384 |
组分i | 组分j | aij | aji | bij | bji | cij =cji | AARD/% |
---|---|---|---|---|---|---|---|
CO2 | ChCl/urea(1∶2) | 20.2588 | 5.7459 | -2828.6769 | -1737.4156 | 0.2 | 0.75 |
CO2 | ChCl/Gly(1∶2) | 23.8246 | 8.5382 | -3151.5550 | -2493.2859 | 0.2 | 0.78 |
CO2 | ChCl/EG(1∶2) | 0.1016 | 5.8073 | 1064.8932 | -1775.0022 | 0.2 | 0.59 |
表3 CO2-DES的NRTL二元交互参数
Table 3 NRTL binary interaction parameters for CO2-DES
组分i | 组分j | aij | aji | bij | bji | cij =cji | AARD/% |
---|---|---|---|---|---|---|---|
CO2 | ChCl/urea(1∶2) | 20.2588 | 5.7459 | -2828.6769 | -1737.4156 | 0.2 | 0.75 |
CO2 | ChCl/Gly(1∶2) | 23.8246 | 8.5382 | -3151.5550 | -2493.2859 | 0.2 | 0.78 |
CO2 | ChCl/EG(1∶2) | 0.1016 | 5.8073 | 1064.8932 | -1775.0022 | 0.2 | 0.59 |
组分i | 组分j | Aij | Bij | Cij | Dij | AARD/% |
---|---|---|---|---|---|---|
CO2 | ChCl/urea(1∶2) | 6462.3174 | -179408.8200 | -1120.7023 | 1.7679 | 2.05 |
CO2 | ChCl/Gly(1∶2) | -591.7956 | 15117.7011 | 103.1011 | -0.1477 | 2.31 |
CO2 | ChCl/EG(1∶2) | 3305.5768 | -92825.7082 | -572.2799 | 0.9036 | 1.46 |
表4 CO2在DES中的亨利系数
Table 4 Henry coefficient of CO2 in DES
组分i | 组分j | Aij | Bij | Cij | Dij | AARD/% |
---|---|---|---|---|---|---|
CO2 | ChCl/urea(1∶2) | 6462.3174 | -179408.8200 | -1120.7023 | 1.7679 | 2.05 |
CO2 | ChCl/Gly(1∶2) | -591.7956 | 15117.7011 | 103.1011 | -0.1477 | 2.31 |
CO2 | ChCl/EG(1∶2) | 3305.5768 | -92825.7082 | -572.2799 | 0.9036 | 1.46 |
组分i | 组分j | aij | aji | bij | bji | cij =cji |
---|---|---|---|---|---|---|
N2 | ChCl/urea(1∶2) | -4.6072 | 5.6872 | 934.4396 | -566.3254 | 0.2 |
O2 | ChCl/urea(1∶2) | -3.5878 | 1.9443 | 1138.4073 | 112.6562 | 0.2 |
N2 | ChCl/Gly(1∶2) | -4.3276 | 4.9755 | 892.4376 | -481.3364 | 0.2 |
O2 | ChCl/Gly(1∶2) | -2.8417 | 0.6281 | 1073.8115 | 303.3775 | 0.2 |
N2 | ChCl/EG(1∶2) | -4.8028 | 5.2850 | 1013.9117 | -695.0201 | 0.2 |
O2 | ChCl/EG(1∶2) | -3.1517 | 0.1611 | 1197.0493 | 278.4344 | 0.2 |
表5 N2-DES和O2-DES的NRTL二元交互参数
Table 5 NRTL binary interaction parameters for N2-DES and O2-DES
组分i | 组分j | aij | aji | bij | bji | cij =cji |
---|---|---|---|---|---|---|
N2 | ChCl/urea(1∶2) | -4.6072 | 5.6872 | 934.4396 | -566.3254 | 0.2 |
O2 | ChCl/urea(1∶2) | -3.5878 | 1.9443 | 1138.4073 | 112.6562 | 0.2 |
N2 | ChCl/Gly(1∶2) | -4.3276 | 4.9755 | 892.4376 | -481.3364 | 0.2 |
O2 | ChCl/Gly(1∶2) | -2.8417 | 0.6281 | 1073.8115 | 303.3775 | 0.2 |
N2 | ChCl/EG(1∶2) | -4.8028 | 5.2850 | 1013.9117 | -695.0201 | 0.2 |
O2 | ChCl/EG(1∶2) | -3.1517 | 0.1611 | 1197.0493 | 278.4344 | 0.2 |
设备名称 | 设备参数 | 参数值 |
---|---|---|
多级压缩机 | 级数 | 5 |
级间冷却器冷却温度/℃ | 20 | |
吸收塔 | 塔板数 | 30 |
冷凝器 | None | |
再沸器 | None | |
闪蒸塔2 | 热负荷/MW | 0 |
操作压力/MPa | 0.01 | |
冷却器 | 冷却温度/℃ | 20 |
表6 CO2工艺流程在Aspen Plus中的设备参数
Table 6 Equipment parameters of CO2 capture process in Aspen Plus
设备名称 | 设备参数 | 参数值 |
---|---|---|
多级压缩机 | 级数 | 5 |
级间冷却器冷却温度/℃ | 20 | |
吸收塔 | 塔板数 | 30 |
冷凝器 | None | |
再沸器 | None | |
闪蒸塔2 | 热负荷/MW | 0 |
操作压力/MPa | 0.01 | |
冷却器 | 冷却温度/℃ | 20 |
DES | 多级压缩机功耗/MW | 压缩机功耗/MW | 泵功耗/MW | 再生能耗/(GJ·t-1) |
---|---|---|---|---|
ChCl/urea(1∶2) | 270.528 | 3.777 | 26.358 | 2.726 |
ChCl/Gly(1∶2) | 270.528 | 4.367 | 26.559 | 2.733 |
ChCl/EG(1∶2) | 270.528 | 69.938 | 52.415 | 3.562 |
表7 DES的能耗情况
Table 7 Energy consumption of DES
DES | 多级压缩机功耗/MW | 压缩机功耗/MW | 泵功耗/MW | 再生能耗/(GJ·t-1) |
---|---|---|---|---|
ChCl/urea(1∶2) | 270.528 | 3.777 | 26.358 | 2.726 |
ChCl/Gly(1∶2) | 270.528 | 4.367 | 26.559 | 2.733 |
ChCl/EG(1∶2) | 270.528 | 69.938 | 52.415 | 3.562 |
DES | 多级压缩机功耗/MW | 再沸器 热负荷/MW | 泵功耗/MW | 再生能耗/ (GJ·t-1) |
---|---|---|---|---|
ChCl/urea(1∶2) | 270.528 | 156.386 | 17.682 | 4.03 |
表8 ChCl/urea(1∶2)在传统醇胺捕集CO2工艺流程模拟的能耗
Table 8 Energy consumption simulation of ChCl/urea (1∶2) in traditional amine CO2 capture process
DES | 多级压缩机功耗/MW | 再沸器 热负荷/MW | 泵功耗/MW | 再生能耗/ (GJ·t-1) |
---|---|---|---|---|
ChCl/urea(1∶2) | 270.528 | 156.386 | 17.682 | 4.03 |
1 | Ramezani R, Mazinani S, Di Felice R. State-of-the-art of CO2 capture with amino acid salt solutions[J]. Reviews in Chemical Engineering, 2022, 38(3): 273-299. |
2 | 陈浮, 王思遥, 于昊辰, 等. 碳中和目标下煤炭变革的技术路径[J]. 煤炭学报, 2022, 47(4): 1452-1461. |
Chen F, Wang S Y, Yu H C, et al. Technological innovation paths of coal industry for achieving carbon neutralization[J]. Journal of China Coal Society, 2022, 47(4): 1452-1461. | |
3 | Peres C B, Resende P M R, Nunes L J R, et al. Advances in carbon capture and use (CCU) technologies: a comprehensive review and CO2 mitigation potential analysis[J]. Clean Technologies, 2022, 4(4): 1193-1207. |
4 | Zhao H Y, Luo X N, Zhang H J, et al. Carbon-based adsorbents for post-combustion capture: a review[J]. Greenhouse Gases: Science and Technology, 2018, 8(1): 11-36. |
5 | 唐思扬, 李星宇, 鲁厚芳, 等. 低能耗化学吸收碳捕集技术展望[J]. 化工进展, 2022, 41(3): 1102-1106. |
Tang S Y, Li X Y, Lu H F, et al. Perspective on low-energy chemical absorption for CO2 capture[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1102-1106. | |
6 | 刘克峰, 刘陶然, 蔡勇, 等. 二氧化碳捕集技术研究和工程示范进展[J]. 化工进展, DOI: 10.16085/j.issn.1000-6613.2023-0730 . |
Liu K F, Liu T R, Cai Y, et al. Progress in research and engineering demonstration of CO2 capture technology[J]. Chemical Industry and Engineering Progress, DOI:10.16085/j.issn.1000-6613.2023-0730 . | |
7 | Gao W L, Liang S Y, Wang R J, et al. Industrial carbon dioxide capture and utilization: state of the art and future challenges[J]. Chemical Society Reviews, 2020, 49(23): 8584-8686. |
8 | Tao M N, Xu N, Gao J Z, et al. Phase-change mechanism for capturing CO2 into an environmentally benign nonaqueous solution: a combined NMR and molecular dynamics simulation study[J]. Energy & Fuels, 2019, 33(1): 474-483. |
9 | Blanchard L A, Dan H C, Beckman E J, et al. Green processing using ionic liquids and CO2 [J]. Nature, 1999, 399: 28-29. |
10 | Lian S H, Song C F, Liu Q L, et al. Recent advances in ionic liquids-based hybrid processes for CO2 capture and utilization[J]. Journal of Environmental Sciences, 2021, 99: 281-295. |
11 | Ma T, Wang J X, Du Z Z, et al. A process simulation study of CO2 capture by ionic liquids[J]. International Journal of Greenhouse Gas Control, 2017, 58: 223-231. |
12 | Shiflett M B, Drew D W, Cantini R A, et al. Carbon dioxide capture using ionic liquid 1-butyl-3-methylimidazolium acetate[J]. Energy & Fuels, 2010, 24(10): 5781-5789. |
13 | Clarke C J, Tu W C, Levers O, et al. Green and sustainable solvents in chemical processes[J]. Chemical Reviews, 2018, 118(2): 747-800. |
14 | Abbott A P, Boothby D, Capper G, et al. Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids[J]. Journal of the American Chemical Society, 2004, 126(29): 9142-9147. |
15 | Hansen B B, Spittle S, Chen B, et al. Deep eutectic solvents: a review of fundamentals and applications[J]. Chemical Reviews, 2021, 121(3): 1232-1285. |
16 | Liu Y, Friesen J B, McAlpine J B, et al. Natural deep eutectic solvents: properties, applications, and perspectives[J]. Journal of Natural Products, 2018, 81(3): 679-690. |
17 | Tomé L I N, Baião V, da Silva W, et al. Deep eutectic solvents for the production and application of new materials[J]. Applied Materials Today, 2018, 10: 30-50. |
18 | Yang F X, Zheng Q, Tan H Z, et al. Insight into the role of hydrogen bond donor in deep eutectic solvents[J]. Journal of Molecular Liquids, 2024, 399: 124332. |
19 | Li X Y, Hou M Q, Han B X, et al. Solubility of CO2 in a choline chloride + urea eutectic mixture[J]. Journal of Chemical & Engineering Data, 2008, 53(2): 548-550. |
20 | Xie Y J, Dong H F, Zhang S J, et al. Solubilities of CO2, CH4, H2, CO and N2 in choline chloride/urea[J]. Green Energy & Environment, 2016, 1(3): 195-200. |
21 | Mirza N R, Nicholas N J, Wu Y, et al. Estimation of normal boiling temperatures, critical properties, and acentric factors of deep eutectic solvents[J]. Journal of Chemical & Engineering Data, 2015, 60(6): 1844-1854. |
22 | Agieienko V, Buchner R. A comprehensive study of density, viscosity, and electrical conductivity of (choline chloride + glycerol) deep eutectic solvent and its mixtures with dimethyl sulfoxide[J]. Journal of Chemical & Engineering Data, 2021, 66(1): 780-792. |
23 | Harifi-Mood A R, Buchner R. Density, viscosity, and conductivity of choline chloride + ethylene glycol as a deep eutectic solvent and its binary mixtures with dimethyl sulfoxide[J]. Journal of Molecular Liquids, 2017, 225: 689-695. |
24 | Lapeña D, Lomba L, Artal M, et al. Thermophysical characterization of the deep eutectic solvent choline chloride: ethylene glycol and one of its mixtures with water[J]. Fluid Phase Equilibria, 2019, 492: 1-9. |
25 | Mjalli F S, Vakili-Nezhaad G, Shahbaz K, et al. Application of the Eötvos and Guggenheim empirical rules for predicting the density and surface tension of ionic liquids analogues[J]. Thermochimica Acta, 2014, 575: 40-44. |
26 | Yadav A, Trivedi S, Rai R, et al. Densities and dynamic viscosities of (choline chloride + glycerol) deep eutectic solvent and its aqueous mixtures in the temperature range (283.15—363.15)K[J]. Fluid Phase Equilibria, 2014, 367: 135-142. |
27 | Ma C Y, Xie Y J, Ji X Y, et al. Modeling, simulation and evaluation of biogas upgrading using aqueous choline chloride/urea[J]. Applied Energy, 2018, 229: 1269-1283. |
28 | Leron R B, Caparanga A, Li M H. Carbon dioxide solubility in a deep eutectic solvent based on choline chloride and urea at T =303.15—343.15 K and moderate pressures[J]. Journal of the Taiwan Institute of Chemical Engineers, 2013, 44(6): 879-885. |
29 | Leron R B, Li M H. Solubility of carbon dioxide in a choline chloride - ethylene glycol based deep eutectic solvent[J]. Thermochimica Acta, 2013, 551: 14-19. |
30 | Leron R B, Li M H. Solubility of carbon dioxide in a eutectic mixture of choline chloride and glycerol at moderate pressures[J]. The Journal of Chemical Thermodynamics, 2013, 57: 131-136. |
31 | Abu-Zahra M R M, Schneiders L H J, Niederer J P M, et al. CO2 capture from power plants(Ⅰ): A parametric study of the technical performance based on monoethanolamine[J]. International Journal of Greenhouse Gas Control, 2007, 1(1): 37-46. |
32 | 林海周, 罗海中, 裴爱国, 等. 燃煤电厂烟气MDEA/PZ混合胺法碳捕集工艺模拟分析[J]. 化工进展, 2019, 38(4): 2046-2055. |
Lin H Z, Luo H Z, Pei A G, et al. Simulation and analysis of carbon dioxide capture process using MDEA/PZ blend solution in a coal-fired power plant[J]. Chemical Industry and Engineering Progress, 2019, 38(4): 2046-2055. | |
33 | 陆诗建, 高丽娟, 王家凤, 等. 烟气CO2捕集热能梯级利用节能工艺耦合优化[J]. 化工进展, 2020, 39(2): 728-737. |
Lu S J, Gao L J, Wang J F, et al. Coupling optimization of energy-saving technology for cascade utilization of flue gas CO2 capture system[J]. Chemical Industry and Engineering Progress, 2020, 39(2): 728-737. |
[1] | 刘亚超, 谭晓杰, 李旭东, 王瑞, 王慧, 韩璇, 赵青山. DES合成高活性CoCO3纳米片及析氧反应性能研究[J]. 化工学报, 2024, 75(9): 3320-3328. |
[2] | 陈巨辉, 苏潼, 李丹, 陈立伟, 吕文生, 孟凡奇. 翅形扰流片作用下的微通道换热特性[J]. 化工学报, 2024, 75(9): 3122-3132. |
[3] | 李舒月, 王欢, 周少强, 毛志宏, 张永民, 王军武, 吴秀花. 基于CPFD方法的U3O8氢还原流化床反应器数值模拟[J]. 化工学报, 2024, 75(9): 3133-3151. |
[4] | 豆少军, 郝亮. PEMFC催化层耦合气体电荷传输过程的介观模拟[J]. 化工学报, 2024, 75(8): 3002-3010. |
[5] | 钱啸宇, 阮璇, 李水清. 外加电场下电介质颗粒层结构重构与悬浮[J]. 化工学报, 2024, 75(8): 2756-2762. |
[6] | 朱子良, 王爽, 姜宇昂, 林梅, 王秋旺. 欧拉-拉格朗日迭代固-液相变算法[J]. 化工学报, 2024, 75(8): 2763-2776. |
[7] | 邓爱明, 何玉荣, 唐天琪, 胡彦伟. 导流板对喷雾流化床内颗粒生长过程影响的模拟[J]. 化工学报, 2024, 75(8): 2787-2799. |
[8] | 金虎, 杨帆, 戴梦瑶. 基于格子Boltzmann方法的液滴在圆柱壁面上运动过程研究[J]. 化工学报, 2024, 75(8): 2897-2908. |
[9] | 杨明军, 宋维, 张磊, 凌铮, 陈兵兵, 宋永臣. CO2-海水水合物生成强化方法研究[J]. 化工学报, 2024, 75(8): 2939-2948. |
[10] | 童永祺, 程杰, 林海, 陈曦, 赵海波. 10 MWth化学链燃烧反应装置的CPFD模拟[J]. 化工学报, 2024, 75(8): 2949-2959. |
[11] | 方立昌, 李梓龙, 陈博, 苏政, 贾莉斯, 王智彬, 陈颖. 基于相变微胶囊悬浮液的芯片阵列冷却特性研究[J]. 化工学报, 2024, 75(7): 2455-2464. |
[12] | 李洪瑞, 黄纯西, 洪小东, 廖祖维, 王靖岱, 阳永荣. 基于自适应变步长同伦法的循环流程收敛算法[J]. 化工学报, 2024, 75(7): 2604-2612. |
[13] | 吴哲明, 张碧云, 郑仁朝. 腈水解酶立体选择性改造及其合成布瓦西坦[J]. 化工学报, 2024, 75(7): 2633-2643. |
[14] | 韩志敏, 李江, 陈则齐, 刘威, 徐志明. 脉动流通道内不同纵向涡发生器的颗粒污垢特性[J]. 化工学报, 2024, 75(7): 2486-2496. |
[15] | 赵志星, 姚智豪, 于雪峰, 杨游胜, 曾英, 于旭东. 锂钠镁共存硫酸盐体系多温相图及其应用[J]. 化工学报, 2024, 75(6): 2123-2133. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||