化工学报 ›› 2024, Vol. 75 ›› Issue (12): 4442-4452.DOI: 10.11949/0438-1157.20240652
陈展珠1,2(
), 叶锦华1,2, 王智彬1,2(
), 杨智1,2, 贾莉斯1,2, 陈颖1,2
收稿日期:2024-06-12
修回日期:2024-07-31
出版日期:2024-12-25
发布日期:2025-01-03
通讯作者:
王智彬
作者简介:陈展珠(1998—),女,硕士研究生,2569398764@qq.com
基金资助:
Zhanzhu CHEN1,2(
), Jinhua YE1,2, Zhibin WANG1,2(
), Zhi YANG1,2, Lisi JIA1,2, Ying CHEN1,2
Received:2024-06-12
Revised:2024-07-31
Online:2024-12-25
Published:2025-01-03
Contact:
Zhibin WANG
摘要:
单分散性液滴在食品、化工、能源、医药和材料等领域均有广泛的应用,而现行方法及装置难以兼顾高单分散性和高效率制备。为此,提出了三维分形流道集成方法实现共轴流通道对等高密度集成,并采用简易方法构建了单级和双级三维分形共轴流通道集成装置;在此基础上实验研究其液滴生成特性及尺寸分布规律。无论稳定模式还是过渡模式的液滴生成,单级4通道与8通道均保持了单通道生成的液滴特性,而生成效率分别提高至单通道的近4倍与8倍。双级16通道在4组流量下制备的液滴单分散性好,变异系数均在3.5%以内;但生成效率提高到单通道的近16倍。可见三维分形集成共轴流通道结构能够在保持制备液滴单分散性的同时提升制备效率。
中图分类号:
陈展珠, 叶锦华, 王智彬, 杨智, 贾莉斯, 陈颖. 三维分形集成共轴流通道实现液滴高效生成[J]. 化工学报, 2024, 75(12): 4442-4452.
Zhanzhu CHEN, Jinhua YE, Zhibin WANG, Zhi YANG, Lisi JIA, Ying CHEN. Efficient generation of droplets through three-dimensional fractal integrated coaxial flow channels[J]. CIESC Journal, 2024, 75(12): 4442-4452.
| 流体 | 密度/(kg/m3) | 黏度/(Pa·s) | 界面张力/(mN/m) | |
|---|---|---|---|---|
| 2%PVA溶液 | 1013.683 | 0.001498 | 5.08 | |
| 97%HDDA溶液 | 1027.73 | 0.004482 | 1.54 | |
| 0.7%洗涤剂溶液 | 1010.16 | 0.000579 | ||
表1 实验流体物性
Table 1 Experimental fluid properties
| 流体 | 密度/(kg/m3) | 黏度/(Pa·s) | 界面张力/(mN/m) | |
|---|---|---|---|---|
| 2%PVA溶液 | 1013.683 | 0.001498 | 5.08 | |
| 97%HDDA溶液 | 1027.73 | 0.004482 | 1.54 | |
| 0.7%洗涤剂溶液 | 1010.16 | 0.000579 | ||
| 通道数 | 平均粒径/µm | 生成效率/(个/min) | 变异系数/% |
|---|---|---|---|
| 单通道 | 1052 | 326 | 1.5 |
| 单级4通道 | 1054 | 1301 | 1.9 |
| 单级8通道 | 1055 | 2598 | 1.9 |
表2 Ⅰ组流量实验结果重要参数汇总
Table 2 Summary of important parameters of group Ⅰ flow experiment results
| 通道数 | 平均粒径/µm | 生成效率/(个/min) | 变异系数/% |
|---|---|---|---|
| 单通道 | 1052 | 326 | 1.5 |
| 单级4通道 | 1054 | 1301 | 1.9 |
| 单级8通道 | 1055 | 2598 | 1.9 |
| 通道数 | 平均粒径/µm | 生成效率/(个/min) | 变异系数/% |
|---|---|---|---|
| 单通道 | 956 | 873 | 6.9 |
| 单级4通道 | 957 | 3475 | 6.7 |
| 单级8通道 | 958 | 6944 | 6.6 |
表3 Ⅱ组流量实验结果重要参数汇总
Table 3 Summary of important parameters of group Ⅱ flow experiment results
| 通道数 | 平均粒径/µm | 生成效率/(个/min) | 变异系数/% |
|---|---|---|---|
| 单通道 | 956 | 873 | 6.9 |
| 单级4通道 | 957 | 3475 | 6.7 |
| 单级8通道 | 958 | 6944 | 6.6 |
| 组别 | 单个通道分散相/ 连续相流量/(ml/min) | 单通道 | 双级16通道 | ||||
|---|---|---|---|---|---|---|---|
| 平均粒径/µm | 生成速率/(个/min) | 变异系数/% | 平均粒径/µm | 生成速率/(个/min) | 变异系数/% | ||
| 1 | 0.1/2 | 1032 | 173 | 1.29 | 1035 | 2750 | 3.33 |
| 2 | 0.1/3 | 950 | 222 | 1.29 | 948 | 3580 | 2.71 |
| 3 | 0.2/4 | 925 | 481 | 0.94 | 933 | 7529 | 0.97 |
| 4 | 0.2/6 | 839 | 646 | 1.34 | 838 | 10391 | 2.30 |
表4 双级分配器液滴生成情况
Table 4 Droplet generation in double stages distributors
| 组别 | 单个通道分散相/ 连续相流量/(ml/min) | 单通道 | 双级16通道 | ||||
|---|---|---|---|---|---|---|---|
| 平均粒径/µm | 生成速率/(个/min) | 变异系数/% | 平均粒径/µm | 生成速率/(个/min) | 变异系数/% | ||
| 1 | 0.1/2 | 1032 | 173 | 1.29 | 1035 | 2750 | 3.33 |
| 2 | 0.1/3 | 950 | 222 | 1.29 | 948 | 3580 | 2.71 |
| 3 | 0.2/4 | 925 | 481 | 0.94 | 933 | 7529 | 0.97 |
| 4 | 0.2/6 | 839 | 646 | 1.34 | 838 | 10391 | 2.30 |
| 1 | Elvira K S, Gielen F, Tsai S S H, et al. Materials and methods for droplet microfluidic device fabrication[J]. Lab on a Chip, 2022, 22(5): 859-875. |
| 2 | de Oliveira Bianchi J R, de la Torre L G, Costa A L R. Droplet-based microfluidics as a platform to design food-grade delivery systems based on the entrapped compound type[J]. Foods, 2023, 12(18): 3385. |
| 3 | Yeh S I, Fu C Y, Sung C Y, et al. Microfluidic fabrication of porous PLGA microspheres without pre-emulsification step[J]. Microfluidics and Nanofluidics, 2023, 27(7): 47. |
| 4 | Xu W, Li X H, Brugger J, et al. Study of the enhanced electricity output of a sliding droplet-based triboelectric nanogenerator for droplet sensor design[J]. Nano Energy, 2022, 98: 107166. |
| 5 | Cheong D Y, Lee W, Park I, et al. Amyloid formation in nanoliter droplets[J]. International Journal of Molecular Sciences, 2022, 23(10): 5480. |
| 6 | 吉笑盈, 郑园, 李晓鹏, 等. 微流控可控制备液滴、颗粒和胶囊及其应用[J]. 化工学报, 2024, 75(4): 1455-1468. |
| Ji X Y, Zheng Y, Li X P, et al. Controlled preparation of droplets, particles and capsules by microfluidics and their applications[J]. CIESC Journal, 2024, 75(4): 1455-1468. | |
| 7 | Orbay S, Sanyal A. Molecularly imprinted polymeric particles created using droplet-based microfluidics: preparation and applications[J]. Micromachines, 2023, 14(4): 763. |
| 8 | 黄心童, 耿宇昊, 刘恒源, 等. 微流控制备新型功能纳米粒子研究进展[J]. 化工学报, 2023, 74(1): 355-364. |
| Huang X T, Geng Y H, Liu H Y, et al. Research progress on new functional nanoparticles prepared by microfluidic technology[J]. CIESC Journal, 2023, 74(1): 355-364. | |
| 9 | Amirifar L, Besanjideh M, Nasiri R, et al. Droplet-based microfluidics in biomedical applications[J]. Biofabrication, 2022, 14(2): 022001. |
| 10 | Li B X, Ma X, Cheng J H, et al. Droplets microfluidics platform—a tool for single cell research[J]. Frontiers in Bioengineering and Biotechnology, 2023, 11: 1121870. |
| 11 | Sumitomo S, Ueta M, Uddin M A, et al. Comparison of oil-in-water emulsion between ultrasonic irradiation and mechanical stirring[J]. Chemical Engineering & Technology, 2019, 42(2): 381-387. |
| 12 | Hoesli C A, Kiang R L J, Raghuram K, et al. Mammalian cell encapsulation in alginate beads using a simple stirred vessel[J]. Journal of Visualized Experiments, 2017(124): 55280. |
| 13 | Yanagishita T, Inoue T, Kondo T, et al. Preparation of monodisperse LiCoO2 hollow particles by membrane emulsification using anodic porous alumina[J]. Chemistry Letters, 2018, 47(4): 551-554. |
| 14 | Zanatta V, Rezzadori K, Penha F M, et al. Stability of oil-in-water emulsions produced by membrane emulsification with microporous ceramic membranes[J]. Journal of Food Engineering, 2017, 195: 73-84. |
| 15 | Ding Y, Howes P D, DeMello A J. Recent advances in droplet microfluidics[J]. Analytical Chemistry, 2020, 92(1): 132-149. |
| 16 | Hu C X, Jin K, Ma H B. A universal model for continuous “one-to-two” high-efficient droplet generation in digital microfluidics[J]. Applied Physics Letters, 2023, 122(18): 181601. |
| 17 | Ofner A, Mattich I, Hagander M, et al. Controlled massive encapsulation via tandem step emulsification in glass[J]. Advanced Functional Materials, 2019, 29(4): 1806821. |
| 18 | Opalski A S, Makuch K, Lai Y K, et al. Grooved step emulsification systems optimize the throughput of passive generation of monodisperse emulsions[J]. Lab on a Chip, 2019, 19(7): 1183-1192. |
| 19 | Vladisavljević G T, Ekanem E E, Zhang Z L, et al. Long-term stability of droplet production by microchannel (step) emulsification in microfluidic silicon chips with large number of terraced microchannels[J]. Chemical Engineering Journal, 2018, 333: 380-391. |
| 20 | Han T T, Zhang L, Xu H, et al. Factory-on-chip: modularised microfluidic reactors for continuous mass production of functional materials[J]. Chemical Engineering Journal, 2017, 326: 765-773. |
| 21 | Yadavali S, Jeong H H, Lee D, et al. Silicon and glass very large scale microfluidic droplet integration for terascale generation of polymer microparticles[J]. Nature Communications, 2018, 9(1): 1222. |
| 22 | Cui Y J, Li Y K, Wang K, et al. High-throughput preparation of uniform tiny droplets in multiple capillaries embedded stepwise microchannels[J]. Journal of Flow Chemistry, 2020, 10(1): 271-282. |
| 23 | Zhang J, Xu W H, Xu F Y, et al. Microfluidic droplet formation in co-flow devices fabricated by micro 3D printing[J]. Journal of Food Engineering, 2021, 290: 110212. |
| 24 | Jeong H H, Chen Z, Yadavali S, et al. Large-scale production of compound bubbles using parallelized microfluidics for efficient extraction of metal ions[J]. Lab on a Chip, 2019, 19(4): 665-673. |
| 25 | Ribeiro de Souza L, Al-Tabbaa A. High throughput production of microcapsules using microfluidics for self-healing of cementitious materials[J]. Lab on a Chip, 2021, 21(23): 4652-4659. |
| 26 | Kim J H, Ryu C H, Chon C H, et al. Three months extended-release microspheres prepared by multi-microchannel microfluidics in beagle dog models[J]. International Journal of Pharmaceutics, 2021, 608: 121039. |
| 27 | Deng C F, Yang S H, Xie R, et al. Flexible fractal integration of microfluidic modules for controllable mass production of monodisperse microdroplets[J]. Industrial & Engineering Chemistry Research, 2023, 62(32): 12690-12702. |
| 28 | 石盼, 颜肖潇, 王行政, 等. 一步法制备生物相容油核微胶囊及其可控释放[J]. 化工学报, 2021, 72(1): 619-627. |
| Shi P, Yan X X, Wang X Z, et al. One-step fabrication of biocompatible oil-core microcapsules with controlled release[J]. CIESC Journal, 2021, 72(1): 619-627. | |
| 29 | 翟小威, 潘湄蝶, 石盼, 等. 一步法高通量可控制备生物相容水/水微囊及其响应释放[J]. 高等学校化学学报, 2022, 43(12): 335-344. |
| Zhai X W, Pan M D, Shi P, et al. One-step high-throughput controlled preparation of biocompatible water/water microcapsules with triggered release[J]. Chemical Journal of Chinese Universities, 2022, 43(12): 335-344. | |
| 30 | 朱佐银, 彭湉, 周新丽. 高通量微流控阵列芯片设计及制备植物乳杆菌微胶囊的研究[J]. 食品与发酵工业, 2023, 49(3): 125-130. |
| Zhu Z Y, Peng T, Zhou X L. High-throughput microfluidic array chip design and study on preparation of Lactobacillus plantarum microcapsules[J]. Food and Fermentation Industries, 2023, 49(3): 125-130. | |
| 31 | Nawar S, Stolaroff J K, Ye C W, et al. Parallelizable microfluidic dropmakers with multilayer geometry for the generation of double emulsions[J]. Lab on a Chip, 2020, 20(1): 147-154. |
| 32 | Senn S M, Poulikakos D. Tree network channels as fluid distributors constructing double-staircase polymer electrolyte fuel cells[J]. Journal of Applied Physics, 2004, 96(1): 842-852. |
| 33 | Wang Y, Zhou X Y, Yang Z H, et al. An integrated and multi-functional droplet-based microfluidic platform for digital DNA amplification[J]. Biosensors and Bioelectronics, 2024, 246: 115831. |
| 34 | Nisisako T, Torii T. Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles[J]. Lab on a Chip, 2008, 8(2): 287-293. |
| 35 | Nisisako T, Ando T, Hatsuzawa T. High-volume production of single and compound emulsions in a microfluidic parallelization arrangement coupled with coaxial annular world-to-chip interfaces[J]. Lab on a Chip, 2012, 12(18): 3426-3435. |
| 36 | Anshori I, Sarwono F Z, Fa'iq M A, et al. From design to performance: 3-D printing-enabled optimization of low-cost droplet microfluidics[J]. IEEE Sensors Journal, 2024, 24(1): 63-70. |
| 37 | Utada A S, Fernandez-Nieves A, Gordillo J M, et al. Absolute instability of a liquid jet in a coflowing stream[J]. Physical Review Letters, 2008, 100(1): 014502. |
| 38 | Wang Z B, Chen Z Z, Wen Y F, et al. Highly efficient droplet generation device based on a three-dimensional fractal structure[J]. Chemical Engineering Science, 2023, 282: 119227. |
| [1] | 刘律, 刘洁茹, 范亮亮, 赵亮. 基于层流效应的被动式颗粒分离微流控方法研究[J]. 化工学报, 2024, 75(S1): 67-75. |
| [2] | 李焱, 郑利军, 张恩勇, 王云飞. 深水海底管道软管内部流体渗透特性模型与试验研究[J]. 化工学报, 2024, 75(S1): 118-125. |
| [3] | 曹佳蕾, 孙立岩, 曾德望, 尹凡, 高子翔, 肖睿. 双流化床化学链制氢反应器的数值模拟[J]. 化工学报, 2024, 75(8): 2865-2874. |
| [4] | 丁家琦, 刘海涛, 赵普, 朱香凝, 王晓放, 谢蓉. 煤炭超临界水制氢反应器内多相流场智能滚动预测研究[J]. 化工学报, 2024, 75(8): 2886-2896. |
| [5] | 金虎, 杨帆, 戴梦瑶. 基于格子Boltzmann方法的液滴在圆柱壁面上运动过程研究[J]. 化工学报, 2024, 75(8): 2897-2908. |
| [6] | 左磊, 王军锋, 高健, 王道睿. 电场调控生物柴油液滴燃烧行为[J]. 化工学报, 2024, 75(8): 2983-2990. |
| [7] | 吴邦汉, 林定标, 陆海峰, 郭晓镭, 刘海峰. 竖直管气动物流传输系统管道压降和传送瓶输送特性[J]. 化工学报, 2024, 75(7): 2465-2473. |
| [8] | 马君霞, 李林涛, 熊伟丽. 基于Tri-training GPR的半监督软测量建模方法[J]. 化工学报, 2024, 75(7): 2613-2623. |
| [9] | 黄志鸿, 周利, 柴士阳, 吉旭. 耦合加氢装置优化的多周期氢网络集成[J]. 化工学报, 2024, 75(5): 1951-1965. |
| [10] | 吉笑盈, 郑园, 李晓鹏, 杨振, 张维, 邱诗蕊, 张倩颖, 罗沧海, 孙东鹏, 陈东, 李东亮. 微流控可控制备液滴、颗粒和胶囊及其应用[J]. 化工学报, 2024, 75(4): 1455-1468. |
| [11] | 张劲, 郭志斌, 罗来明, 卢善富, 相艳. 5 kW重整甲醇高温质子交换膜燃料电池系统设计与性能[J]. 化工学报, 2024, 75(4): 1697-1704. |
| [12] | 赵金鹏, 张永民, 兰斌, 罗节文, 赵碧丹, 王军武. 气固鼓泡床结构双流体传热模型及其模拟验证[J]. 化工学报, 2024, 75(4): 1497-1507. |
| [13] | 李乃良, 刘常松, 杜雪平, 张一帆, 韩东太. 基于Hurst指数的严重段塞流多尺度分形特性[J]. 化工学报, 2024, 75(2): 484-492. |
| [14] | 宋仕容, 刘宏臣, 米晓天, 许超, 杨梅, 尧超群. 同轴微通道内管结构对液滴生成的影响规律研究[J]. 化工学报, 2024, 75(2): 566-574. |
| [15] | 郑群, 陈培强, 王长富, 熊春华, 徐万里, 阮曼. 海水激活电池电解液流动特性分析[J]. 化工学报, 2024, 75(12): 4770-4779. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号