化工学报 ›› 2024, Vol. 75 ›› Issue (S1): 67-75.DOI: 10.11949/0438-1157.20240246
收稿日期:
2024-03-01
修回日期:
2024-04-12
出版日期:
2024-12-25
发布日期:
2024-12-17
通讯作者:
范亮亮
作者简介:
刘律(2000—),男,硕士,2836756542@qq.com
基金资助:
Lü LIU1(), Jieru LIU2, Liangliang FAN3(
), Liang ZHAO2
Received:
2024-03-01
Revised:
2024-04-12
Online:
2024-12-25
Published:
2024-12-17
Contact:
Liangliang FAN
摘要:
微颗粒分离在能源化工、生物医学等领域中具有重要应用价值。基于层流效应,设计了一种新型的被动式颗粒分离微流控方法,并系统研究了流动参数、流体物性、颗粒属性等因素对微颗粒分离的影响。研究结果表明,该微流控方法能够成功实现不同尺寸微颗粒的高效分离。流量比和颗粒粒径对颗粒分离效果影响显著,随着流量比和颗粒粒径差异的增加,颗粒分离效率和分离纯度升高。总流量和流体物性对颗粒分离影响较弱。该新型微流控方法具有结构和操作简单、分离精度高、适用性广等优点,在能源化工、生物医学等领域具有巨大的应用潜力。
中图分类号:
刘律, 刘洁茹, 范亮亮, 赵亮. 基于层流效应的被动式颗粒分离微流控方法研究[J]. 化工学报, 2024, 75(S1): 67-75.
Lü LIU, Jieru LIU, Liangliang FAN, Liang ZHAO. Study on passive microfluidic method for particle separation based on laminar effect[J]. CIESC Journal, 2024, 75(S1): 67-75.
SR | 15 μm | 7 μm | ||
---|---|---|---|---|
E/% | P/% | E/% | P/% | |
4 | 82.8 | 23.2 | 86.7 | 99.5 |
8 | 95.7 | 84.1 | 96.2 | 99.3 |
10 | 100 | 85.2 | 92.9 | 100 |
12 | 96.4 | 92.9 | 99.3 | 100 |
16 | 100 | 98.8 | 99.6 | 100 |
20 | 100 | 100 | 100 | 100 |
表1 不同流量比下7和15 μm颗粒分离效率和分离纯度
Table 1 Separation efficiency and separation purity of 7 and 15 μm particles under different flow rate ratios
SR | 15 μm | 7 μm | ||
---|---|---|---|---|
E/% | P/% | E/% | P/% | |
4 | 82.8 | 23.2 | 86.7 | 99.5 |
8 | 95.7 | 84.1 | 96.2 | 99.3 |
10 | 100 | 85.2 | 92.9 | 100 |
12 | 96.4 | 92.9 | 99.3 | 100 |
16 | 100 | 98.8 | 99.6 | 100 |
20 | 100 | 100 | 100 | 100 |
总流量Q/(μl/min) | 15 μm | 7 μm | ||
---|---|---|---|---|
E/% | P/% | E/% | P/% | |
1 | 88.9 | 91.4 | 98.9 | 99.6 |
5 | 100 | 100 | 100 | 100 |
10 | 100 | 98.8 | 99.6 | 100 |
20 | 100 | 100 | 99.8 | 100 |
表2 不同流量下7和15 μm颗粒分离效率和分离纯度
Table 2 Separation efficiency and separation purity of 7 and 15 μm particles at different flow rates
总流量Q/(μl/min) | 15 μm | 7 μm | ||
---|---|---|---|---|
E/% | P/% | E/% | P/% | |
1 | 88.9 | 91.4 | 98.9 | 99.6 |
5 | 100 | 100 | 100 | 100 |
10 | 100 | 98.8 | 99.6 | 100 |
20 | 100 | 100 | 99.8 | 100 |
流体工质 | 15 μm | 7 μm | ||
---|---|---|---|---|
E/% | P/% | E/% | P/% | |
NaCl溶液 | 100 | 85.1 | 97.9 | 100 |
0.5%PVP溶液 | 100 | 100 | 100 | 100 |
2%PVP溶液 | 100 | 94.4 | 99.5 | 100 |
表3 不同流体工质中7和15 μm颗粒的分离效率和分离纯度
Table 3 Separation efficiency and separation purity of 7 and 15 μm particles in different kinds of fluids
流体工质 | 15 μm | 7 μm | ||
---|---|---|---|---|
E/% | P/% | E/% | P/% | |
NaCl溶液 | 100 | 85.1 | 97.9 | 100 |
0.5%PVP溶液 | 100 | 100 | 100 | 100 |
2%PVP溶液 | 100 | 94.4 | 99.5 | 100 |
不同颗粒粒径/μm | E/% | P/% |
---|---|---|
4 | 57 | 100 |
10 | 85.9 | 31.8 |
7 | 99.6 | 100 |
15 | 100 | 98.8 |
表4 不同颗粒粒径颗粒的分离效率和分离纯度
Table 4 Separation efficiency and separation purity of particles with different particle sizes
不同颗粒粒径/μm | E/% | P/% |
---|---|---|
4 | 57 | 100 |
10 | 85.9 | 31.8 |
7 | 99.6 | 100 |
15 | 100 | 98.8 |
1 | Lu K J, Hou F Y, Fu W L, et al. Efficient solar photocatalytic hydrogen production using direct Z-scheme heterojunctions[J]. Physical Chemistry Chemical Physics, 2021, 23(39): 22743-22749. |
2 | Shen S H, Zhao L, Guo L J. Zn m In2S3+m (m=1—5, integer): a new series of visible-light-driven photocatalysts for splitting water to hydrogen[J]. International Journal of Hydrogen Energy, 2010, 35(19): 10148-10154. |
3 | Wang H L, Fu P B, Li J P, et al. Separation-and-recovery technology for organic waste liquid with a high concentration of inorganic particles[J]. Engineering, 2018, 4(3): 406-415. |
4 | Yang Q, Li Z M, Lv W J, et al. On the laboratory and field studies of removing fine particles suspended in wastewater using mini-hydrocyclone[J]. Separation and Purification Technology, 2013, 110: 93-100. |
5 | Fu P B, Wang H L, Li J P, et al. Cyclonic gas stripping deoiling and gas flow acceleration classification for the resource utilization of spent catalysts in residue hydrotreating process[J]. Journal of Cleaner Production, 2018, 190: 689-702. |
6 | Lee L M, Rosano J, Wang Y, et al. Label-free mesenchymal stem cell enrichment from bone marrow samples by inertial microfluidics[J]. Analytical Methods, 2018, 10(7): 713-721. |
7 | Wylot B, Konarzewska K, Bugajski L, et al. Isolation of vascular endothelial cells from intact and injured murine brain cortex-technical issues and pitfalls in FACS analysis of the nervous tissue[J]. Cytometry. Part A, 2015, 87(10): 908-920. |
8 | Chen W C W, Péault B, Huard J. Regenerative translation of human blood-vessel-derived MSC precursors[J]. Stem Cells International, 2015, 2015: 375187. |
9 | Xue K, Zhang X D, Qi L, et al. Isolation, identification, and comparison of cartilage stem progenitor/cells from auricular cartilage and perichondrium[J]. American Journal of Translational Research, 2016, 8(2): 732-741. |
10 | Xu H W, Dong B, Xu S H, et al. High purity microfluidic sorting and in situ inactivation of circulating tumor cells based on multifunctional magnetic composites[J]. Biomaterials, 2017, 138: 69-79. |
11 | Jeanbart L, Swartz M A. Engineering opportunities in cancer immunotherapy[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(47): 14467-14472. |
12 | Haverty P M, Lin E, Tan J, et al. Reproducible pharmacogenomic profiling of cancer cell line panels[J]. Nature, 2016, 533(7603): 333-337. |
13 | Di Meo A, Bartlett J, Cheng Y F, et al. Liquid biopsy: a step forward towards precision medicine in urologic malignancies[J]. Molecular Cancer, 2017, 16(1): 80. |
14 | Varillas J I, Zhang J L, Chen K F, et al. Microfluidic isolation of circulating tumor cells and cancer stem-like cells from patients with pancreatic ductal adenocarcinoma[J]. Theranostics, 2019, 9(5): 1417-1425. |
15 | Kim T H, Yoon H J, Fouladdel S, et al. Characterizing circulating tumor cells isolated from metastatic breast cancer patients using graphene oxide based microfluidic assay[J]. Advanced Biosystems, 2019, 3(2): e1800278. |
16 | Kim S H, Ito H, Kozuka M, et al. Cancer marker-free enrichment and direct mutation detection in rare cancer cells by combining multi-property isolation and microfluidic concentration[J]. Lab on a Chip, 2019, 19(5): 757-766. |
17 | Bhagat A A S, Bow H, Hou H W, et al. Microfluidics for cell separation[J]. Medical & Biological Engineering & Computing, 2010, 48(10): 999-1014. |
18 | Huh D, Bahng J H, Ling Y B, et al. Gravity-driven microfluidic particle sorting device with hydrodynamic separation amplification[J]. Analytical Chemistry, 2007, 79(4): 1369-1376. |
19 | Xu X F, Huang X W, Sun J J, et al. Recent progress of inertial microfluidic-based cell separation[J]. Analyst, 2021, 146(23): 7070-7086. |
20 | Kang J H, Krause S, Tobin H, et al. A combined micromagnetic-microfluidic device for rapid capture and culture of rare circulating tumor cells[J]. Lab on a Chip, 2012, 12(12): 2175-2181. |
21 | Huang X H, Torres-Castro K, Varhue W, et al. Self-aligned sequential lateral field non-uniformities over channel depth for high throughput dielectrophoretic cell deflection[J]. Lab on a Chip, 2021, 21(5): 835-843. |
22 | Ding X Y, Peng Z L, Lin S C S, et al. Cell separation using tilted-angle standing surface acoustic waves[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(36): 12992-12997. |
23 | Li P, Mao Z M, Peng Z L, et al. Acoustic separation of circulating tumor cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(16): 4970-4975. |
24 | Wu M X, Ozcelik A, Rufo J, et al. Acoustofluidic separation of cells and particles[J]. Microsystems & Nanoengineering, 2019, 5: 32. |
25 | MacDonald M P, Spalding G C, Dholakia K. Microfluidic sorting in an optical lattice[J]. Nature, 2003, 426(6965): 421-424. |
26 | Liu Z B, Huang Y Q, Liang W L, et al. Cascaded filter deterministic lateral displacement microchips for isolation and molecular analysis of circulating tumor cells and fusion cells[J]. Lab on a Chip, 2021, 21(15): 2881-2891. |
27 | Yamada M, Nakashima M, Seki M. Pinched flow fractionation: continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel[J]. Analytical Chemistry, 2004, 76(18): 5465-5471. |
28 | Lu C Y, Xu J, Han J T, et al. A novel microfluidic device integrating focus-separation speed reduction design and trap arrays for high-throughput capture of circulating tumor cells[J]. Lab on a Chip, 2020, 20(22): 4094-4105. |
29 | Yamada M, Seko W, Yanai T, et al. Slanted, asymmetric microfluidic lattices as size-selective sieves for continuous particle/cell sorting[J]. Lab on a Chip, 2017, 17(2): 304-314. |
30 | Gou Y X, Jia Y X, Wang P, et al. Progress of inertial microfluidics in principle and application[J]. Sensors, 2018, 18(6): 1762. |
31 | Kuntaegowdanahalli S S, Bhagat A A S, Kumar G, et al. Inertial microfluidics for continuous particle separation in spiral microchannels[J]. Lab on a Chip, 2009, 9(20): 2973-2980. |
32 | Nam J, Lim H, Kim D, et al. Continuous separation of microparticles in a microfluidic channel via the elasto-inertial effect of non-Newtonian fluid[J]. Lab on a Chip, 2012, 12(7): 1347-1354. |
33 | Yuan D, Zhao Q B, Yan S, et al. Recent progress of particle migration in viscoelastic fluids[J]. Lab on a Chip, 2018, 18(4): 551-567. |
34 | Li D, Lu X Y, Xuan X C. Viscoelastic separation of particles by size in straight rectangular microchannels: a parametric study for a refined understanding[J]. Analytical Chemistry, 2016, 88(24): 12303-12309. |
35 | Lu X Y, Xuan X C. Continuous microfluidic particle separation via elasto-inertial pinched flow fractionation[J]. Analytical Chemistry, 2015, 87(12): 6389-6396. |
[1] | 杨勇, 祖子轩, 李煜坤, 王东亮, 范宗良, 周怀荣. T型圆柱形微通道内CO2碱液吸收数值模拟[J]. 化工学报, 2024, 75(S1): 135-142. |
[2] | 李雨霜, 王兴成, 温伯尧, 骆政园, 白博峰. 多孔介质中乳状液驱油的两相流动过程及其影响因素[J]. 化工学报, 2024, 75(S1): 56-66. |
[3] | 祝赫, 张仪, 齐娜娜, 张锴. 欧拉-欧拉双流体模型中颗粒黏性对液固散式流态化的影响[J]. 化工学报, 2024, 75(9): 3103-3112. |
[4] | 陈巨辉, 苏潼, 李丹, 陈立伟, 吕文生, 孟凡奇. 翅形扰流片作用下的微通道换热特性[J]. 化工学报, 2024, 75(9): 3122-3132. |
[5] | 陈超伟, 柳洋, 杜文静, 李金波, 史大阔, 辛公明. 局部热点下微肋通道流动传热特性[J]. 化工学报, 2024, 75(9): 3113-3121. |
[6] | 曲玖哲, 杨鹏, 杨绪飞, 张伟, 宇波, 孙东亮, 王晓东. 硅基微柱簇阵列微通道流动沸腾实验研究[J]. 化工学报, 2024, 75(8): 2840-2851. |
[7] | 董可豪, 周敬之, 周峰, 陈海家, 淮秀兰, 李栋. 超薄空间复杂边界条件下气体流动压降实验[J]. 化工学报, 2024, 75(7): 2505-2521. |
[8] | 方立昌, 李梓龙, 陈博, 苏政, 贾莉斯, 王智彬, 陈颖. 基于相变微胶囊悬浮液的芯片阵列冷却特性研究[J]. 化工学报, 2024, 75(7): 2455-2464. |
[9] | 赵赫, 费滢洁, 朱春英, 付涛涛, 马友光. 高黏体系中纳米颗粒稳定气泡的形变及破裂行为[J]. 化工学报, 2024, 75(6): 2180-2189. |
[10] | 李娟, 曹耀文, 朱章钰, 石雷, 李佳. 仿生正形尾鳍结构微通道流动与传热特性数值研究及结构优化[J]. 化工学报, 2024, 75(5): 1802-1815. |
[11] | 刘帆, 张芫通, 陶成, 胡成玉, 杨小平, 魏进家. 歧管式射流微通道液冷散热性能[J]. 化工学报, 2024, 75(5): 1777-1786. |
[12] | 谢磊, 徐永生, 林梅. 不同截面肋柱-软尾结构单相流动传热比较[J]. 化工学报, 2024, 75(5): 1787-1801. |
[13] | 吉笑盈, 郑园, 李晓鹏, 杨振, 张维, 邱诗蕊, 张倩颖, 罗沧海, 孙东鹏, 陈东, 李东亮. 微流控可控制备液滴、颗粒和胶囊及其应用[J]. 化工学报, 2024, 75(4): 1455-1468. |
[14] | 陈彦松, 阮达, 刘渊博, 郑通, 张帅帅, 马学虎. 微通道换热器拓扑结构优化与性能研究[J]. 化工学报, 2024, 75(3): 823-835. |
[15] | 陈饶, 赵鑫, 陈戴欣, 姜圣坤, 廉应江, 王金波, 杨梅, 陈光文. 微反应器内甲苯连续二硝化制备二硝基甲苯[J]. 化工学报, 2024, 75(3): 867-876. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 119
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 100
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||