化工学报 ›› 2025, Vol. 76 ›› Issue (4): 1523-1533.DOI: 10.11949/0438-1157.20240877
徐逢时1(
), 程礼盛1, 左夏华2, 于晓宇1, 阎华1, 杨卫民1, 安瑛1(
)
收稿日期:2024-08-02
修回日期:2024-09-28
出版日期:2025-04-25
发布日期:2025-05-12
通讯作者:
安瑛
作者简介:徐逢时(2000—),男,硕士研究生,xfs2022lucky@163.com
基金资助:
Fengshi XU1(
), Lisheng CHENG1, Xiahua ZUO2, Xiaoyu YU1, Hua YAN1, Weimin YANG1, Ying AN1(
)
Received:2024-08-02
Revised:2024-09-28
Online:2025-04-25
Published:2025-05-12
Contact:
Ying AN
摘要:
转子旋流是动态强化纳米流体集热的有效方式之一。通过数值模拟分析了在密闭太阳能集热管中,两叶片转子的旋流作用及在旋流作用下辐照强度、纳米流体浓度对水基炭黑纳米流体集热性能的影响。结果表明:旋流作用可明显提高纳米流体集热性能,仅在单个转子作用下温升能提高33.81%;在转子数量研究范围内(0、1、2、4),纳米流体随转子数量的增多扰动翻转程度增大,集热性能、温度均匀性均有明显提升;旋流作用下,在辐照强度研究的范围内(500~1500 W·m-2),水基炭黑纳米流体温升量与辐照强度呈线性正相关,辐照强度每增加100 W·m-2,集热管内温升可提高2.7℃;在纳米流体浓度研究的范围内[0~0.010%(质量分数)],纳米流体单位体积吸收的辐射量随浓度增加而增加,浓度变化不会影响集热管内温度分布的均匀性。本研究模拟了纳米流体在两叶片转子作用下的光热转换性能,为太阳能动态集热提供了新的方向。
中图分类号:
徐逢时, 程礼盛, 左夏华, 于晓宇, 阎华, 杨卫民, 安瑛. 旋流作用下水基炭黑纳米流体光热转换性能模拟研究[J]. 化工学报, 2025, 76(4): 1523-1533.
Fengshi XU, Lisheng CHENG, Xiahua ZUO, Xiaoyu YU, Hua YAN, Weimin YANG, Ying AN. Simulation study on the photothermal conversion performance of water-based carbon black nanofluid under swirling flow[J]. CIESC Journal, 2025, 76(4): 1523-1533.
| 转子类型 | 叶片数量m/个 | 外径D/mm | 长度l/mm | 螺距p/mm |
|---|---|---|---|---|
| 螺旋两叶片转子 | 2 | 22 | 27.5 | 200 |
表1 转子的结构参数
Table 1 Structural parameters of the rotor
| 转子类型 | 叶片数量m/个 | 外径D/mm | 长度l/mm | 螺距p/mm |
|---|---|---|---|---|
| 螺旋两叶片转子 | 2 | 22 | 27.5 | 200 |
图5 不同质量分数水基炭黑纳米流体在190~1100 nm波长范围内的吸收系数
Fig.5 Absorption coefficients of different concentrations of water-based carbon black nanofluids in the wavelength range of 190—1100 nm
| 质量分数ω/% | 密度ρ/ (kg∙m-3) | 黏度μ/ (kg∙m-1∙s-1) | 热导率K/ (W∙m-1∙K-1) | 比热容c/ (J∙g-1∙K-1) |
|---|---|---|---|---|
| 0.001 | 993.40 | 0.87 | 0.613 | 4.212 |
| 0.003 | 993.41 | 0.92 | 0.614 | 4.210 |
| 0.005 | 993.41 | 0.96 | 0.616 | 4.207 |
| 0.008 | 993.42 | 1.00 | 0.617 | 4.204 |
| 0.010 | 993.42 | 1.03 | 0.621 | 4.202 |
表2 水基炭黑纳米流体的热物理性能参数
Table 2 Thermophysical property parameters of water-based carbon black nanofluids
| 质量分数ω/% | 密度ρ/ (kg∙m-3) | 黏度μ/ (kg∙m-1∙s-1) | 热导率K/ (W∙m-1∙K-1) | 比热容c/ (J∙g-1∙K-1) |
|---|---|---|---|---|
| 0.001 | 993.40 | 0.87 | 0.613 | 4.212 |
| 0.003 | 993.41 | 0.92 | 0.614 | 4.210 |
| 0.005 | 993.41 | 0.96 | 0.616 | 4.207 |
| 0.008 | 993.42 | 1.00 | 0.617 | 4.204 |
| 0.010 | 993.42 | 1.03 | 0.621 | 4.202 |
| 1 | 向娇娇, 樊莎, 高达利, 等. 光热转换用碳基材料的制备及应用进展[J]. 浙江理工大学学报(自然科学版), 2023, 48(1): 33-42. |
| Xiang J J, Fan S, Gao D L, et al. Progress in preparation and application of carbon-based materials for photothermal conversion[J]. Journal of Zhejiang Sci-Tech University (Natural Sciences Edition), 2023, 48(1): 33-42. | |
| 2 | Hussain M, Shah S K H, Sajjad U, et al. Recent developments in optical and thermal performance of direct absorption solar collectors[J]. Energies, 2022, 15(19): 7101. |
| 3 | Hasan A, Alazzam A, Abu-Nada E. Direct absorption solar collectors: fundamentals, modeling approaches, design and operating parameters, advances, knowledge gaps, and future prospects[J]. Progress in Energy and Combustion Science, 2024, 103: 101160. |
| 4 | Raj P, Subudhi S. A review of studies using nanofluids in flat-plate and direct absorption solar collectors[J]. Renewable and Sustainable Energy Reviews, 2018, 84: 54-74. |
| 5 | Tembhare S P, Barai D P, Bhanvase B A. Performance evaluation of nanofluids in solar thermal and solar photovoltaic systems: a comprehensive review[J]. Renewable and Sustainable Energy Reviews, 2022, 153: 111738. |
| 6 | Sainz-Mañas M, Bataille F, Caliot C, et al. Direct absorption nanofluid-based solar collectors for low and medium temperatures. A review[J]. Energy, 2022, 260: 124916. |
| 7 | Wang Q R, Yang L, Zhao N, et al. A review of applications of plasmonic and conventional nanofluids in solar heat collection[J]. Applied Thermal Engineering, 2023, 219: 119476. |
| 8 | Moghaieb H S, Amendola V, Khalil S, et al. Nanofluids for direct-absorption solar collectors—DASCs: a review on recent progress and future perspectives[J]. Nanomaterials, 2023, 13(7): 1232. |
| 9 | 左夏华, 宋立健, 关昌峰, 等. 用于直接吸收式太阳能集热器的纳米流体研究进展[J]. 材料导报, 2023, 37(21): 29-37. |
| Zuo X H, Song L J, Guan C F, et al. Review of application on nanofluids for direct absorption solar collectors[J]. Materials Reports, 2023, 37(21): 29-37. | |
| 10 | Zhu W L, Zuo X H, Ding Y M, et al. Experimental investigation on the photothermal conversion performance of cuttlefish ink nanofluids for direct absorption solar collectors[J]. Applied Thermal Engineering, 2023, 221: 119835. |
| 11 | Zuo X H, Yang W M, Shi M N, et al. Experimental investigation on photothermal conversion properties of lampblack ink nanofluids[J]. Solar Energy, 2021, 218: 1-10. |
| 12 | Zuo X H, Yang W M, Zhang Z H, et al. Experimental investigation on photothermal conversion properties of collagen solution-based carbon black nanofluid[J]. Case Studies in Thermal Engineering, 2022, 38: 102371. |
| 13 | Beicker C L L, Amjad M, Bandarra Filho E P, et al. Experimental study of photothermal conversion using gold/water and MWCNT/water nanofluids[J]. Solar Energy Materials and Solar Cells, 2018, 188: 51-65. |
| 14 | Bao Y Q, Luo Q L, Zheng X, et al. Hydroxyl functionalized MWCNT nanofluids with excellent photothermal conversion performance in direct absorption solar collectors[J]. Diamond and Related Materials, 2023, 140: 110489. |
| 15 | Mehrali M, Ghatkesar M K, Pecnik R. Full-spectrum volumetric solar thermal conversion via graphene/silver hybrid plasmonic nanofluids[J]. Applied Energy, 2018, 224: 103-115. |
| 16 | Wen J, Chang Q C, Zhu J S, et al. The enhanced photothermal characteristics of plasmonic ZrC/TiN composite nanofluids for direct absorption solar collectors[J]. Renewable Energy, 2023, 206: 676-685. |
| 17 | Bao Y Q, Huang A, Zheng X, et al. Enhanced photothermal conversion performance of MWCNT/SiC hybrid aqueous nanofluids in direct absorption solar collectors[J]. Journal of Molecular Liquids, 2023, 387: 122577. |
| 18 | Gorji T B, Ranjbar A A. Geometry optimization of a nanofluid-based direct absorption solar collector using response surface methodology[J]. Solar Energy, 2015, 122: 314-325. |
| 19 | Chen M J, He Y R, Zhu J Q, et al. Investigating the collector efficiency of silver nanofluids based direct absorption solar collectors[J]. Applied Energy, 2016, 181: 65-74. |
| 20 | Li X L, Chang H W, Zeng L J, et al. Numerical analysis of photothermal conversion performance of MXene nanofluid in direct absorption solar collectors[J]. Energy Conversion and Management, 2020, 226: 113515. |
| 21 | 于晓宇, 安瑛, 左夏华, 等. 旋流作用下水基炭黑纳米流体集热性能研究[J]. 化工学报, 2023, 74(10): 4097-4108. |
| Yu X Y, An Y, Zuo X H, et al. Study on the heat collection performance of water-based carbon black nanofluid under swirling flow[J]. CIESC Journal, 2023, 74(10): 4097-4108. | |
| 22 | Joo H J, Kwak H Y, Kong M. Effect of twisted tape inserts on thermal performance of heat pipe evacuated-tube solar thermal collector[J]. Energy, 2022, 254: 124307. |
| 23 | García A, Martin R H, Pérez-García J. Experimental study of heat transfer enhancement in a flat-plate solar water collector with wire-coil inserts[J]. Applied Thermal Engineering, 2013, 61(2): 461-468. |
| 24 | Sundar L S, Singh M K, Punnaiah V, et al. Experimental investigation of Al2O3/water nanofluids on the effectiveness of solar flat-plate collectors with and without twisted tape inserts[J]. Renewable Energy, 2018, 119: 820-833. |
| 25 | Zhou L Q, Yang W L, Li C J, et al. Performance evaluation and parameter optimization of tubular direct absorption solar collector with photothermal nanofluid[J]. Applied Thermal Engineering, 2024, 246: 122955. |
| 26 | Bozorgi M, Ghasemi K, Mohaghegh M R, et al. Optimization of silver/water-based porous wavy direct absorption solar collector[J]. Renewable Energy, 2023, 202: 1387-1401. |
| 27 | Struchalin P G, Yunin V S, Kutsenko K V, et al. Performance of a tubular direct absorption solar collector with a carbon-based nanofluid[J]. International Journal of Heat and Mass Transfer, 2021, 179: 121717. |
| 28 | Elghobashi S. On predicting particle-laden turbulent flows[J]. Applied Scientific Research, 1994, 52(4): 309-329. |
| 29 | Crowe C T, Schwarzkopf J D, Sommerfeld M, et al. Multiphase Flows with Droplets and Particles[M]. Boca Raton: CRC Press, 1997. |
| 30 | 张一帆. 非均匀纳米流体辐射特性研究[D]. 大庆: 东北石油大学, 2019. |
| Zhang Y F. Study on radiation characteristics of non-uniform nanofluids[D]. Daqing: Northeast Petroleum University, 2019. | |
| 31 | Thakur A. Development and usability of solar thermal collectors in different fields: an overview[J]. Materials Today: Proceedings, 2021, 46: 6644-6649. |
| 32 | 李国柱, 王帅, 黄凯良, 等. 太阳能集热器种类与集热性能提升技术研究进展[J]. 科技导报, 2022, 40(24): 50-63. |
| Li G Z, Wang S, Huang K L, et al. Research status of solar collector types and their thermal performance enhancement technologies[J]. Science & Technology Review, 2022, 40(24): 50-63. |
| [1] | 齐聪, 岳林菲. 交织网状小通道热沉的传热特性[J]. 化工学报, 2025, 76(4): 1534-1544. |
| [2] | 刘萍, 邱雨生, 李世婧, 孙瑞奇, 申晨. 微通道内纳米流体传热流动特性[J]. 化工学报, 2025, 76(1): 184-197. |
| [3] | 李匡奚, 于佩潜, 王江云, 魏浩然, 郑志刚, 冯留海. 微气泡旋流气浮装置内流动分析与结构优化[J]. 化工学报, 2024, 75(S1): 223-234. |
| [4] | 王皓宇, 杨杨, 荆文婕, 杨斌, 唐雨, 刘毅. 不同旋流器作用下气液螺旋环状流动特性研究[J]. 化工学报, 2024, 75(8): 2744-2755. |
| [5] | 邢雷, 关帅, 蒋明虎, 赵立新, 蔡萌, 刘海龙, 陈德海. 高气液比井下气液旋流分离器结构设计与性能分析[J]. 化工学报, 2024, 75(3): 900-913. |
| [6] | 王佳琪, 魏皓琦, 苟阿静, 刘佳兴, 周昕霖, 葛坤. 纳米粒子作用下CO2水合物生成机理研究[J]. 化工学报, 2024, 75(3): 956-966. |
| [7] | 赵若晗, 黄蒙蒙, 朱春英, 付涛涛, 高习群, 马友光. 缩口T型微通道内纳米流体吸收CO2的流动与传质研究[J]. 化工学报, 2024, 75(1): 221-230. |
| [8] | 袁佳琦, 刘政, 黄锐, 张乐福, 贺登辉. 泡状入流条件下旋流泵能量转换特性研究[J]. 化工学报, 2023, 74(9): 3807-3820. |
| [9] | 赵佳佳, 田世祥, 李鹏, 谢洪高. SiO2-H2O纳米流体强化煤尘润湿性的微观机理研究[J]. 化工学报, 2023, 74(9): 3931-3945. |
| [10] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
| [11] | 李新亚, 邢雷, 蒋明虎, 赵立新. 倒锥注气强化井下油水分离水力旋流器性能研究[J]. 化工学报, 2023, 74(3): 1134-1144. |
| [12] | 白剑钊, 郭子轩, 王德武, 刘燕, 王若瑾, 唐猛, 张少峰. 摇摆对气液并流模式立体旋流筛板压降的影响研究[J]. 化工学报, 2023, 74(2): 707-720. |
| [13] | 彭梦琦, 张涛, 李茂胜, 施正荣, 蔡靖雍. 光谱分频水基ZnO纳米流体制备及其热电性能调控[J]. 化工学报, 2023, 74(12): 5027-5037. |
| [14] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 多级螺旋分离器结构优化设计与性能分析[J]. 化工学报, 2023, 74(11): 4587-4599. |
| [15] | 齐聪, 李可傲, 李春阳. 微肋结构对纳米流体绕流圆柱热性能的影响[J]. 化工学报, 2021, 72(4): 2006-2017. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号