化工学报 ›› 2025, Vol. 76 ›› Issue (5): 2348-2357.DOI: 10.11949/0438-1157.20241220
李紫鹃(
), 谭晓艳, 吴永盛, 杨陈怡, 陈红, 毕小刚, 刘捷(
), 喻发全(
)
收稿日期:2024-10-31
修回日期:2024-12-03
出版日期:2025-05-25
发布日期:2025-06-13
通讯作者:
刘捷,喻发全
作者简介:李紫鹃(2002—),女,硕士研究生,zijuan_wit@163.com
基金资助:
Zijuan LI(
), Xiaoyan TAN, Yongsheng WU, Chenyi YANG, Hong CHEN, Xiaogang BI, Jie LIU(
), Faquan YU(
)
Received:2024-10-31
Revised:2024-12-03
Online:2025-05-25
Published:2025-06-13
Contact:
Jie LIU, Faquan YU
摘要:
膜分离技术是一种高效、节能的CO2分离技术。固有微孔梯形聚合物因其高孔隙率、高选择性、结构稳定等优点被视作CO2分离技术的优势材料。通过分子动力学模拟方法构建了三维扭曲催化芳烃-降冰片烯环化(CANAL)梯形聚合物膜(CANAL-Me-S5F膜)对CO2/N2混合气体的吸附和渗透模型,并对其CO2/N2分离性能进行研究。为了充分考虑聚合物链的柔性特征,在计算过程中,聚合物膜的大部分结构保持自由运动状态。结果表明,CO2在CANAL-Me-S5F膜中的吸附量(4.00 mmol/g)明显大于N2(0.30 mmol/g),这是由CANAL-Me-S5F与CO2分子之间更强的相互吸引作用决定的。CANAL-Me-S5F膜中CO2和N2的渗透率分别为22546.09 Barrer和1094.01 Barrer,渗透选择性
中图分类号:
李紫鹃, 谭晓艳, 吴永盛, 杨陈怡, 陈红, 毕小刚, 刘捷, 喻发全. 分子模拟研究三维扭曲催化芳烃-降冰片烯环化聚合物膜的CO2/N2分离机理[J]. 化工学报, 2025, 76(5): 2348-2357.
Zijuan LI, Xiaoyan TAN, Yongsheng WU, Chenyi YANG, Hong CHEN, Xiaogang BI, Jie LIU, Faquan YU. Molecular simulation study on CO2/N2 separation via 3D-contorted catalytic arene-norbornene annulation polymer membrane[J]. CIESC Journal, 2025, 76(5): 2348-2357.
图1 CANAL-Me-S5F聚合物的结构(a)以及CO2/N2混合气体的吸附过程(b)和渗透过程(c)(膜中的紫色区域是CANAL-Me-S5F聚合物膜的位置约束层)
Fig.1 Structure of CANAL-Me-S5F polymer (a) and sorption (b) and permeation(c) processes of CO2/N2 mixture (purple area in membrane refers to restrained layer)
| 参数 | 气体 | 模拟值 | 现有文献结果 [ |
|---|---|---|---|
| S/(mmol/g) | CO2 | 4.00 | — |
| N2 | 0.30 | — | |
| 13.33 | — | ||
| P/Barrer | CO2 | 22546.09 | 4000±100 |
| N2 | 1094.01 | 220±8 | |
| 20.61 |
表1 CANAL-Me-S5F膜的气体分离性能
Table 1 Results of gas separation through CANAL-Me-S5F membrane
| 参数 | 气体 | 模拟值 | 现有文献结果 [ |
|---|---|---|---|
| S/(mmol/g) | CO2 | 4.00 | — |
| N2 | 0.30 | — | |
| 13.33 | — | ||
| P/Barrer | CO2 | 22546.09 | 4000±100 |
| N2 | 1094.01 | 220±8 | |
| 20.61 |
图6 渗透过程中吸附在CANAL-Me-S5F膜内和渗透过CANAL-Me-S5F膜的气体分子数随时间的变化
Fig.6 Variation of number of gas molecules sorbed in CANAL-Me-S5F membrane and permeated through CANAL-Me-S5F membrane versus time during permeation
图7 CO2和N2在吸附过程(a)和渗透过程(b)中沿z方向的密度分布(膜位于两条虚线之间)
Fig.7 Density profiles of CO2 and N2 along z direction during sorption (a) and permeation (b) processes (membrane is between the two dashed lines)
| 1 | Kamio E, Yoshioka T, Matsuyama H. Recent advances in carbon dioxide separation membranes: a review[J]. Journal of Chemical Engineering of Japan, 2023, 56(1): 2222000. |
| 2 | Bredesen R, Kumakiri I, Peters T. CO2 capture with membrane systems[M]//Drioli E, Giorno L. Membrane Operations. Weinheim: Wiley-VCH, 2009: 195-220. |
| 3 | Wang S F, Li X Q, Wu H, et al. Advances in high permeability polymer-based membrane materials for CO2 separations[J]. Energy & Environmental Science, 2016, 9(6): 1863-1890. |
| 4 | Kamiya Y, Naito Y, Mizoguchi K, et al. Thermodynamic interactions in rubbery polymer/gas systems[J]. Journal of Polymer Science Part B: Polymer Physics, 1997, 35(7): 1049-1053. |
| 5 | Dai Z D, Deng L Y. Membranes for CO2 capture and separation: progress in research and development for industrial applications[J]. Separation and Purification Technology, 2024, 335: 126022. |
| 6 | Figueroa J D, Fout T, Plasynski S, et al. Advances in CO2 capture technology—the U.S. Department of Energy's carbon sequestration program[J]. International Journal of Greenhouse Gas Control, 2008, 2(1): 9-20. |
| 7 | Merkel T C, Lin H Q, Wei X T, et al. Power plant post-combustion carbon dioxide capture: an opportunity for membranes[J]. Journal of Membrane Science, 2010, 359(1/2): 126-139. |
| 8 | Keairns D, Newby R, Shah V. Current and future technologies for power generation with post-combustion carbon capture[R]. United States, 2012. |
| 9 | Sanders D F, Smith Z P, Guo R L, et al. Energy-efficient polymeric gas separation membranes for a sustainable future: a review[J]. Polymer, 2013, 54(18): 4729-4761. |
| 10 | Lee Y C, Chuah C Y, Lee J, et al. Effective functionalization of porous polymer fillers to enhance CO2/N2 separation performance of mixed-matrix membranes[J]. Journal of Membrane Science, 2022, 647: 120309. |
| 11 | Wang Y H, Zhou Y, Zhang X R, et al. SPEEK membranes by incorporation of NaY zeolite for CO2/N2 separation[J]. Separation and Purification Technology, 2021, 275: 119189. |
| 12 | Li X X, Jiao C L, Zhang X Q, et al. A general strategy for fabricating polymer/nanofiller composite membranes with enhanced CO2/N2 separation performance[J]. Journal of Cleaner Production, 2022, 350: 131468. |
| 13 | Liu J Y, Hou X D, Park H B, et al. High-performance polymers for membrane CO2/N2 separation[J]. Chemistry, 2016, 22(45): 15980-15990. |
| 14 | Ding X L, Wang W J, Cheng X Y, et al. Composite membranes based on ether oxygen-rich polyimide with superior CO2/N2 separation properties prepared by interfacial polymerization[J]. Journal of Membrane Science, 2024, 693: 122355. |
| 15 | Zhao B W, Wong J W, Liang C Z, et al. Inner-selective polyethersulfone-polydimethylsiloxane (PES-PDMS) thin film composite hollow fiber membrane for CO2/N2 separation at high pressures[J]. Separation and Purification Technology, 2023, 323: 124439. |
| 16 | Pang R Z, Chen K K, Han Y, et al. Highly permeable polyethersulfone substrates with bicontinuous structure for composite membranes in CO2/N2 separation[J]. Journal of Membrane Science, 2020, 612: 118443. |
| 17 | Sandru M, Sandru E M, Ingram W F, et al. An integrated materials approach to ultrapermeable and ultraselective CO2 polymer membranes[J]. Science, 2022, 376(6588): 90-94. |
| 18 | Xu X Z, Wang J J, Zhou A W, et al. High-efficiency CO2 separation using hybrid LDH-polymer membranes[J]. Nature Communications, 2021, 12(1): 3069. |
| 19 | Barnett J W, Bilchak C R, Wang Y W, et al. Designing exceptional gas-separation polymer membranes using machine learning[J]. Science Advances, 2020, 6(20): eaaz4301. |
| 20 | Chen L D, Su P C, Liu J D, et al. Post-synthesis amination of polymer of intrinsic microporosity membranes for CO2 separation[J]. AIChE Journal, 2023, 69(6): e18050. |
| 21 | McKeown N B. The structure-property relationships of polymers of intrinsic microporosity (PIMs)[J]. Current Opinion in Chemical Engineering, 2022, 36: 100785. |
| 22 | Lai H W H, Benedetti F M, Jin Z X, et al. Tuning the molecular weights, chain packing, and gas-transport properties of CANAL ladder polymers by short alkyl substitutions[J]. Macromolecules, 2019, 52(16): 6294-6302. |
| 23 | Lai H W H, Benedetti F M, Ahn J M, et al. Hydrocarbon ladder polymers with ultrahigh permselectivity for membrane gas separations[J]. Science, 2022, 375(6587): 1390-1392. |
| 24 | Robinson A M, Xia Y. Regioisomeric spirobifluorene CANAL ladder polymers and their gas separation performance[J]. ACS Macro Letters, 2024: 118-123. |
| 25 | Ma X H, Lai H W H, Wang Y G, et al. Facile synthesis and study of microporous catalytic arene-norbornene annulation-Tröger’s base ladder polymers for membrane air separation[J]. ACS Macro Letters, 2020, 9(5): 680-685. |
| 26 | Hazazi K, Wang Y G, Srivatsa Bettahalli N M, et al. Catalytic arene-norbornene annulation (CANAL) ladder polymer derived carbon membranes with unparalleled hydrogen/carbon dioxide size-sieving capability[J]. Journal of Membrane Science, 2022, 654: 120548. |
| 27 | Xu Q B, Xin B R, Wei J, et al. Tröger’s base polymeric membranes for CO2 separation: a review[J]. Journal of Materials Chemistry A, 2023, 11(29): 15600-15634. |
| 28 | Yuan P, Zhang M R, Pang Y Y, et al. Intrinsically microporous polyimides from norbornyl bis-benzocyclobutene-containing diamines and rigid dianhydrides for membrane-based gas separation[J]. ACS Applied Polymer Materials, 2023, 5(2): 1420-1429. |
| 29 | Liu B, Smit B. Molecular simulation studies of separation of CO2/N2, CO2/CH4, and CH4/N2 by ZIFs[J]. The Journal of Physical Chemistry C, 2010, 114(18): 8515-8522. |
| 30 | Meng X S, Fang T M, Zhou G H, et al. Molecular simulation study on CO2 separation performance of GO/ionic liquid membrane[J]. International Journal of Heat and Mass Transfer, 2022, 197: 123360. |
| 31 | Xu P, Zhang X C, Zhao L L, et al. Prominently improved CO2/N2 separation efficiency by ultrathin-ionic-liquid-covered MXene membrane[J]. Separation and Purification Technology, 2023, 311: 123296. |
| 32 | Neyertz S, Brown D, Salimi S, et al. Molecular characterization of membrane gas separation under very high temperatures and pressure: single-and mixed-gas CO2/CH4 and CO2/N2 permselectivities in hybrid networks[J]. Membranes, 2022, 12(5): 526. |
| 33 | Apriliyanto Y B, Faginas-Lago N, Evangelisti S, et al. Multilayer graphtriyne membranes for separation and storage of CO2: molecular dynamics simulations of post-combustion model mixtures[J]. Molecules, 2022, 27(18): 5958. |
| 34 | Kojabad M E, Babaluo A, Tavakoli A. A novel semi-mobile carrier facilitated transport membrane containing aniline/poly (ether-block-amide) for CO2/N2 separation: molecular simulation and experimental study[J]. Separation and Purification Technology, 2021, 266: 118494. |
| 35 | Ozcan A, Semino R, Maurin G, et al. Modeling of gas transport through polymer/MOF interfaces: a microsecond-scale concentration gradient-driven molecular dynamics study[J]. Chemistry of Materials, 2020, 32(3): 1288-1296. |
| 36 | Ozcan A, Fan D, Datta S J, et al. Tuning MOF/polymer interfacial pore geometry in mixed matrix membrane for upgrading CO2 separation performance[J]. Science Advances, 2024, 10(28): eadk5846. |
| 37 | Asif K, Lock S S M, Ali Ammar Taqvi S, et al. A molecular simulation study on amine-functionalized silica/polysulfone mixed matrix membrane for mixed gas separation[J]. Chemosphere, 2023, 311: 136936. |
| 38 | Daglar H, Keskin S. Combining machine learning and molecular simulations to unlock gas separation potentials of MOF membranes and MOF/polymer MMMs[J]. ACS Applied Materials & Interfaces, 2022, 14(28): 32134-32148. |
| 39 | Heuchel M, Fritsch D, Budd P M, et al. Atomistic packing model and free volume distribution of a polymer with intrinsic microporosity (PIM-1)[J]. Journal of Membrane Science, 2008, 318(1/2): 84-99. |
| 40 | Fang W J, Zhang L L, Jiang J W. Polymers of intrinsic microporosity for gas permeation: a molecular simulation study[J]. Molecular Simulation, 2010, 36(12): 992-1003. |
| 41 | Zhou J H, Zhu X, Hu J, et al. Mechanistic insight into highly efficient gas permeation and separation in a shape-persistent ladder polymer membrane[J]. Physical Chemistry Chemical Physics, 2014, 16(13): 6075-6083. |
| 42 | Shi Q, Zhang K, Lu R F, et al. Water desalination and biofuel dehydration through a thin membrane of polymer of intrinsic microporosity: atomistic simulation study[J]. Journal of Membrane Science, 2018, 545: 49-56. |
| 43 | Cabrales-Navarro F A, Gómez-Ballesteros J L, Balbuena P B. Molecular dynamics simulations of metal-organic frameworks as membranes for gas mixtures separation[J]. Journal of Membrane Science, 2013, 428: 241-250. |
| 44 | Zhang N, Luo Y, Li Z W, et al. Molecular investigation on the mechanism of permselective transport of CO2/N2 mixture through graphene slit[J]. Separation and Purification Technology, 2022, 282: 119986. |
| 45 | Li W, Zheng X, Dong Z H, et al. Molecular dynamics simulations of CO2/N2 separation through two-dimensional graphene oxide membranes[J]. The Journal of Physical Chemistry C, 2016, 120(45): 26061-26066. |
| 46 | Shan M X, Xue Q Z, Jing N N, et al. Influence of chemical functionalization on the CO2/N2 separation performance of porous graphene membranes[J]. Nanoscale, 2012, 4(17): 5477-5482. |
| 47 | Liu J, Jiang J W. Molecular design of microporous polymer membranes for the upgrading of natural gas[J]. The Journal of Physical Chemistry C, 2019, 123(11): 6607-6615. |
| 48 | Tong M M, Yang Q Y, Ma Q T, et al. Few-layered ultrathin covalent organic framework membranes for gas separation: a computational study[J]. Journal of Materials Chemistry A, 2016, 4(1): 124-131. |
| 49 | Abraham M J, Murtola T, Schulz R, et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers[J]. SoftwareX, 2015, 1: 19-25. |
| 50 | Jorgensen W L, Maxwell D S, Tirado-Rives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids[J]. Journal of the American Chemical Society, 1996, 118(45): 11225-11236. |
| 51 | Zhao Z Y, Liu J, Jiang J W. Dipeptide membranes for CO2 separation: a molecular simulation study[J]. Fluid Phase Equilibria, 2020, 515: 112570. |
| 52 | Kong X, Liu J. An atomistic simulation study on POC/PIM mixed-matrix membranes for gas separation[J]. The Journal of Physical Chemistry C, 2019, 123(24): 15113-15121. |
| 53 | Harris J G, Yung K H. Carbon dioxide's liquid-vapor coexistence curve and critical properties as predicted by a simple molecular model[J]. The Journal of Physical Chemistry, 1995, 99(31): 12021-12024. |
| 54 | Nosé S. A molecular dynamics method for simulations in the canonical ensemble[J]. Molecular Physics, 1984, 52(2): 255-268. |
| 55 | Parrinello M, Rahman A. Polymorphic transitions in single crystals: a new molecular dynamics method[J]. Journal of Applied Physics, 1981, 52(12): 7182-7190. |
| 56 | Golzar K, Modarress H, Amjad-Iranagh S. Separation of gases by using pristine, composite and nanocomposite polymeric membranes: a molecular dynamics simulation study[J]. Journal of Membrane Science, 2017, 539: 238-256. |
| 57 | Low Z X, Budd P M, McKeown N B, et al. Gas permeation properties, physical aging, and its mitigation in high free volume glassy polymers[J]. Chemical Reviews, 2018, 118(12): 5871-5911. |
| 58 | Lin H Q, Van Wagner E, Freeman B D, et al. Plasticization-enhanced hydrogen purification using polymeric membranes[J]. Science, 2006, 311(5761): 639-642. |
| 59 | Tiwari R R, Jin J Y, Freeman B D, et al. Physical aging, CO2 sorption and plasticization in thin films of polymer with intrinsic microporosity (PIM-1)[J]. Journal of Membrane Science, 2017, 537: 362-371. |
| 60 | Zhang L L, Xiao Y C, Chung T S, et al. Mechanistic understanding of CO2-induced plasticization of a polyimide membrane: a combination of experiment and simulation study[J]. Polymer, 2010, 51(19): 4439-4447. |
| 61 | 李辰鑫, 潘艳秋, 何流, 等. 基于碳微晶结构的炭膜模型及其气体分离模拟[J]. 化工学报, 2023, 74(5): 2057-2066. |
| Li C X, Pan Y Q, He L, et al. Carbon membrane model based on carbon microcrystal structure and its gas separation simulation[J]. CIESC Journal, 2023, 74(5): 2057-2066. |
| [1] | 郭彭涛, 王婷, 薛波, 应允攀, 刘大欢. 用于CH4/N2分离的多吸附位点超微孔MOF[J]. 化工学报, 2025, 76(5): 2304-2312. |
| [2] | 花敬贤, 罗宇荣, 顾亚伟, 吴婷婷, 潘宜昌, 邢卫红. 超薄取向ZIF-8膜的制备及乙烯/乙烷高效分离[J]. 化工学报, 2025, 76(5): 2209-2218. |
| [3] | 李艳, 雷美丽, 李鑫钢. 基于分离性能的顺序式模拟移动床结构调控策略[J]. 化工学报, 2025, 76(5): 2219-2229. |
| [4] | 刘鑫, 郑皓仁, 陈强, 丁静怡, 黄康, 徐至. 全钒液流电池用纤维素纳米晶掺杂混合基质膜[J]. 化工学报, 2025, 76(5): 2294-2303. |
| [5] | 巴雅琪, 吴涛, 邸安頔, 陆安慧. 多孔炭材料用于低碳烃分离的研究进展[J]. 化工学报, 2025, 76(5): 2136-2157. |
| [6] | 谈朋, 李雪梅, 刘晓勤, 孙林兵. 基于柔性MOFs的磁响应复合材料及其丙烯吸附性能研究[J]. 化工学报, 2025, 76(5): 2230-2240. |
| [7] | 向昕辰, 鲁丹, 赵影, 姚之侃, 寇瑞强, 郑丹军, 周志军, 张林. 聚酰胺纳滤膜表面季铵化提高荷正电性及其锂镁分离性能[J]. 化工学报, 2025, 76(5): 2377-2386. |
| [8] | 茅雨洁, 路晓飞, 锁显, 杨立峰, 崔希利, 邢华斌. 工业气体中微量氧深度脱除催化剂研究进展[J]. 化工学报, 2025, 76(5): 1997-2010. |
| [9] | 时任泽, 丁秋燕, 袁振军, 那健, 刘见华, 郭树虎, 赵雄, 李洪, 高鑫. 4N电子级二乙氧基甲基硅烷的纯化技术研究[J]. 化工学报, 2025, 76(5): 2186-2197. |
| [10] | 郭明钢, 杨晓航, 代岩, 米盼盼, 马世鑫, 贺高红, 肖武, 崔福军. 贫氦管输天然气提氦多元化产品耦合工艺优化设计[J]. 化工学报, 2025, 76(5): 2251-2261. |
| [11] | 程刘惠美, 闫军营, 刘慧情, 王治澎, 王报英, 徐铜文, 汪耀明. 双极膜电渗析在醇水体系的应用研究进展[J]. 化工学报, 2025, 76(5): 1960-1972. |
| [12] | 顾栋, 皮行健, 张叠, 张瑛. 不同粒径CAU-1/PI混合基质膜的构建与H2/CO2分离性能研究[J]. 化工学报, 2025, 76(5): 2410-2418. |
| [13] | 张耀辉, 班宇杰, 杨维慎. 以蒸气加工法制备和修饰金属-有机框架膜[J]. 化工学报, 2025, 76(5): 2070-2086. |
| [14] | 杨雅南, 常胜然, 薛松林, 潘建明, 邢卫红. 基于光、电驱动促进海水中铀和锂提取的研究进展[J]. 化工学报, 2025, 76(5): 1927-1942. |
| [15] | 杨紫博, 王有发, 岳寒松, 远双杰, 耿付江, 李晴晴, 奥德, 李斌, 叶茂, 顾振杰, 乔志华. MOF玻璃基气体分离膜的研究进展[J]. 化工学报, 2025, 76(5): 2158-2168. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号