| 1 |
Zhang H P, Fan Y L, Krishna R, et al. Robust metal-organic framework with multiple traps for trace Xe/Kr separation[J]. Science Bulletin, 2021, 66(11): 1073-1079.
|
| 2 |
李大明. 氪-85的性质和应用[J]. 中国照明电器, 2000(9): 20.
|
|
Li D M. Properties and applications of krypton-85[J]. China Light & Lighting, 2000(9): 20.
|
| 3 |
王伟, 罗娟, 杨淼, 等. 锂电池制造企业氪-85涂覆密度仪放射防护改造效果评价[J]. 中国工业医学杂志, 2019, 32(3): 230-231.
|
|
Wang W, Luo J, Yang M, et al. Assessment and analysis on transformation effect of radiological protection facilities for overstandard krypton-85 coated densitometers in a lithium battery manufacturing enterprise[J]. Chinese Journal of Industrial Medicine, 2019, 32(3): 230-231.
|
| 4 |
Musy S, Meyzonnat G, Barbecot F, et al. In-situ sampling for krypton-85 groundwater dating[J]. Journal of Hydrology X, 2021, 11: 100075.
|
| 5 |
Denisova N, Gavare Z, Revalde G, et al. A study of capillary discharge lamps in Ar-Hg and Xe-Hg mixtures[J]. Journal of Physics D: Applied Physics, 2011, 44(15): 155201.
|
| 6 |
Schoeppner M, Glaser A. Present and future potential of krypton-85 for the detection of clandestine reprocessing plants for treaty verification[J]. Journal of Environmental Radioactivity, 2016, 162: 300-309.
|
| 7 |
郭贵银. 核电厂气态流出物中氪-85的分析方法研究及应用[R]. 苏州: 苏州热工研究院有限公司, 2020.
|
|
Guo G Y. Research and application of analysis method for krypton-85 in gaseous outflow of nuclear power plant[R]. Suzhou: Suzhou Nuclear Power Research Institute Co., Ltd., 2020.
|
| 8 |
Ahlswede J, Hebel S, Ross J O, et al. Update and improvement of the global krypton-85 emission inventory[J]. Journal of Environmental Radioactivity, 2013, 115: 34-42.
|
| 9 |
Smethie W M, Solomon D K, Schiff S L,et al.Tracing groundwater flow in the Borden aquifer using krypton-85[J]. Journal of Hydrology, 1992, 130(1/2/3/4): 279-297.
|
| 10 |
陈彬, 武山, 宋晓靓, 等. 用于氙氪吸附分离的金属-有机骨架材料耐辐照性能的初步研究[J]. 核技术, 2022, 45(1): 51-57.
|
|
Chen B, Wu S, Song X J, et al. Preliminary study on irradiation stability of metal-organic skeleton materials for the adsorption and separation of xenon and krypton[J]. Nuclear Techniques, 2022, 45(1): 51-57.
|
| 11 |
Holdsworth A, Eccles H, Sharrad C, et al. Spent nuclear fuel—waste or resource? The potential of strategic materials recovery during recycle for sustainability and advanced waste management[J]. Waste, 2023, 1(1): 249-263.
|
| 12 |
宋凤丽, 刘志辉, 吕丹, 等. 乏燃料后处理厂废气处理系统化学安全问题分析[J]. 核科学与工程, 2015, 35(3): 560-567.
|
|
Song F L, Liu Z H, Lv D, et al. Analysis on chemical safety problems of radioactive gas waste treatment system in nuclear fuel reprocessing plant[J]. Nuclear Science and Engineering, 2015, 35(3): 560-567.
|
| 13 |
何军勇, 张双全, 任勇, 等. 动力堆乏燃料后处理厂三废处理调研报告[R]. 嘉峪关: 中国核科技信息与经济研究院, 2006.
|
|
He J Y, Zhang S Q, Ren Y, et al. Research Report on the Treatment of Three Wastes in Spent Fuel Reprocessing Plant of Power Reactor[R]. Jiayuguan: China Institute of Nuclear Science and Technology Information and Economics, 2006.
|
| 14 |
熊顺顺, 闫钊通, 刘博煜, 等. 放射性惰性气体分离与分离材料研究进展[J]. 核化学与放射化学, 2020, 42(6): 478-497.
|
|
Xiong S S, Yan Z T, Liu B Y, et al. Research progress on radioactive noble gas separation and separation materials[J]. Journal of Nuclear and Radiochemistry, 2020, 42(6): 478-497.
|
| 15 |
逄锦鑫, 尹玉国, 孙尔雁. 乏燃料后处理中氪-85处理技术研究[J]. 广东化工, 2022, 49(11): 78-80.
|
|
Pang J X, Yin Y G, Sun E Y. Understanding the treatment technology of Kr-85 during the spent fuel reprocessing[J]. Guangdong Chemical Industry, 2022, 49(11): 78-80.
|
| 16 |
放射性废物管理[Z]. 嘉峪关: 核工业总公司四〇四厂与核科学技术情报研究所, 1996: 6.
|
|
Radioactive waste management[Z]. Jiayuguan: CNNC 404 Corporation and Institute of Nuclear Science and Technology Information, 1996: 6.
|
| 17 |
陆治美. 放射性同位素提取及制源工艺[M]. 北京: 中国原子能出版社, 2012: 2-10.
|
|
Lu Z M. Radioisotope Extraction and Source Preparation Technology[M]. Beijing: China Atomic Energy Publishing, 2012: 2-10.
|
| 18 |
Mckayh A C. Background consideration in the immobilization of volatile radionuclides. Management of gaseous wastes from nuclear facilities[C]// Proc Int Symp. Vienna: IAEA, 1980: 59-78.
|
| 19 |
陈莉云, 武山, 张昌云,等. 用制备色谱法分离氪氙[J]. 核技术, 2012, 35(6): 442-446.
|
|
Chen L Y, Wu S, Zhang C Y, et al. Separation of Xe and Kr using preparative chromatography method[J]. Nuclear Techniques, 2012, 35(6): 442-446.
|
| 20 |
玛依热·阿不力提甫, 钟子豪, 白希. 制备气相色谱在挥发性成分分离中的应用研究进展[J]. 色谱, 2023, 41(1): 37-46.
|
|
Mayira A, Zhong Z H, Bai X. Progress in the application of preparative gas chromatography in separating volatile compounds[J]. Chinese Journal of Chromatography, 2023, 41(1): 37-46.
|
| 21 |
王兆程, 程瑾, 王宜迪, 等. 1,4-环己烷二甲酸二甲酯顺反异构体的气相色谱分析[J]. 当代化工, 2023, 52(4): 1006-1008.
|
|
Wang Z C, Cheng J, Wang Y D, et al. Gas chromatographic analysis of dimethyl 1, 4-cyclohexanedicarboxylate cis-trans isomers[J]. Contemporary Chemical Industry, 2023, 52(4): 1006-1008.
|
| 22 |
杜伯犀, 龚艳艳. 高温煤焦油轻质组分的高压制备色谱分离研究[J]. 煤质技术, 2019, 34(4): 10-13.
|
|
Du B X, Gong Y Y. Separation of light components in high-temperature coal tar by high performance liquid chromatography[J]. Coal Quality Technology, 2019(4): 10-13.
|
| 23 |
张震, 和文龙, 张罡, 等. 基于低温制备色层法的溶解尾气中氪-85纯化装置与方法[J]. 当代化工, 2024, 53(7): 1525-1529+1534.
|
|
Zhang Z, He W L, Zhang G, et al. Research on purification device and method of krypton-85 in dissolved tail gas based on low temperature preparation chromatography[J]. Contemporary Chemical Industry, 2024, 53(7): 1525-1529, 1534.
|
| 24 |
胡波, 张雪平, 苏鸣皋, 等. 放射性气体中85Kr/133Xe的吸附与分离技术研究现状[J]. 应用化工, 2018, 47(9): 2010-2014, 2019.
|
|
Hu B, Zhang X P, Su M G, et al. Study on adsorption and separation technology for 85Kr and 133Xe in radioactive gases[J]. Applied Chemical Industry, 2018, 47(9): 2010-2014, 2019.
|
| 25 |
Zhou Y C, Chen X F, Lin Y, et al. Removal of nitrogen pollutants in the chemical looping process: a review[J]. Energies, 2024, 17(14): 3432.
|
| 26 |
Kancharlapalli S, Natarajan S, Ghanty T K. Confinement-directed adsorption of noble gases (Xe/Kr) in MFM-300(M)-based metal–organic framework materials[J]. The Journal of Physical Chemistry C, 2019, 123(45): 27531-27541.
|
| 27 |
Xiong J B, Li A L, Fan Y L, et al. Creating uniform pores for xenon/krypton and acetylene/ethylene separation on a strontium-based metal-organic framework[J]. Journal of Solid State Chemistry, 2020, 288: 121337.
|
| 28 |
Li Y H, Min X B, Li W H, et al. Experimental and computational evaluation of Ag-exchanged ZSM-5 and SSZ-13 for xenon capture[J]. Microporous and Mesoporous Materials, 2022, 330: 111631.
|
| 29 |
Grand J, Talapaneni S N, Vicente A, et al. One-pot synthesis of silanol-free nanosized MFI zeolite[J]. Nature Materials, 2017, 16(10): 1010-1015.
|
| 30 |
胡苏阳, 刘鑫博, 唐建峰, 等. 13X沸石分子筛对低浓度CO2动态吸附[J]. 化工进展, 2022, 41(1): 153-160.
|
|
Hu S Y, Liu X B, Tang J F, et al. Dynamic adsorption of low concentration CO2 over 13X zeolite[J]. Chemical Industry and Engineering Progress, 2022, 41(1): 153-160.
|