化工学报 ›› 2025, Vol. 76 ›› Issue (8): 4248-4258.DOI: 10.11949/0438-1157.20250118
何晨1(
), 陆明飞1, 王令金2, 许晓颖2, 董鹏博1, 赵文涛1, 隆武强1(
)
收稿日期:2025-02-06
修回日期:2025-03-25
出版日期:2025-08-25
发布日期:2025-09-17
通讯作者:
隆武强
作者简介:何晨(2001—),男,硕士研究生,hc1@mail.dlut.edu.cn
基金资助:
Chen HE1(
), Mingfei LU1, Lingjin WANG2, Xiaoying XU2, Pengbo DONG1, Wentao ZHAO1, Wuqiang LONG1(
)
Received:2025-02-06
Revised:2025-03-25
Online:2025-08-25
Published:2025-09-17
Contact:
Wuqiang LONG
摘要:
为探究高压下氨-甲醇混合燃料的稀薄燃烧和排放特性,在定容燃烧弹中对其层流火焰传播特性进行了可视化研究,并基于自主开发的机理开展了化学反应动力学分析。研究发现,随着甲醇能量占比的增加,层流火焰传播速度显著提高,且火焰的稳定性得到改善,当甲醇能量占比由20%增加至50%时,Φ=0.7和Φ=0.8的层流燃烧速度分别增加了110%和99.6%。排放方面,NO的生成途径主要有HNO+M
中图分类号:
何晨, 陆明飞, 王令金, 许晓颖, 董鹏博, 赵文涛, 隆武强. 氨-甲醇高压混合气稀燃层流实验与模拟研究[J]. 化工学报, 2025, 76(8): 4248-4258.
Chen HE, Mingfei LU, Lingjin WANG, Xiaoying XU, Pengbo DONG, Wentao ZHAO, Wuqiang LONG. Experimental and simulation study of lean-burn laminar flow of ammonia-methanol high-pressure mixture[J]. CIESC Journal, 2025, 76(8): 4248-4258.
| 外推方法 | 拟合公式 |
|---|---|
| LS | |
| LC | |
| NQ |
表1 拉伸火焰外推模型
Table 1 Stretch flame extrapolation model
| 外推方法 | 拟合公式 |
|---|---|
| LS | |
| LC | |
| NQ |
| 反应 | 反应参数 | ||||||
|---|---|---|---|---|---|---|---|
| 原始机理 | 改进机理 | ||||||
| A | β | Ea/(J/mol) | A | β | Ea/(J/mol) | ||
| 1 | NNH | 3.00×108 | 0 | 0 | 6.50×102 | 0 | 0 |
| 2 | NH2+NO | 4.30×1010 | 0.294 | -866 | 8.30×1010 | 0.31 | -866 |
| 3 | HNO+H | 9.00×1011 | 0.72 | 660 | 5.20×1012 | 0.72 | 660 |
| 4 | HNO+OH | 1.30×107 | 1.90 | -950 | 1.30×106 | 2.10 | -950 |
| 5 | H+NO+M | 4.48×1019 | -1.32 | 740 | 5.60×1019 | -1.290 | 740 |
表2 改进的反应动力学数据
Table 2 The modified reaction kinetics data
| 反应 | 反应参数 | ||||||
|---|---|---|---|---|---|---|---|
| 原始机理 | 改进机理 | ||||||
| A | β | Ea/(J/mol) | A | β | Ea/(J/mol) | ||
| 1 | NNH | 3.00×108 | 0 | 0 | 6.50×102 | 0 | 0 |
| 2 | NH2+NO | 4.30×1010 | 0.294 | -866 | 8.30×1010 | 0.31 | -866 |
| 3 | HNO+H | 9.00×1011 | 0.72 | 660 | 5.20×1012 | 0.72 | 660 |
| 4 | HNO+OH | 1.30×107 | 1.90 | -950 | 1.30×106 | 2.10 | -950 |
| 5 | H+NO+M | 4.48×1019 | -1.32 | 740 | 5.60×1019 | -1.290 | 740 |
| [1] | Moshiul A, Mohammad R, Hira F, et al. Alternative marine fuel research advances and future trends: a bibliometric knowledge mapping approach[J]. Sustainability, 2022, 14(9): 4947. |
| [2] | Yoro K O, Daramola M O. CO2 emission sources, greenhouse gases, and the global warming effect[M]//Advances in Carbon Capture. Cambridge: Woodhead Publishing, 2020: 3-28. |
| [3] | Stančin H, Mikulčić H, Wang X, et al. A review on alternative fuels in future energy system[J]. Renewable and Sustainable Energy Reviews, 2020, 128: 109927. |
| [4] | Wang X, Khurshid A, Qayyum S, et al. The role of green innovations, environmental policies and carbon taxes in achieving the sustainable development goals of carbon neutrality[J]. Environmental Science and Pollution Research, 2022, 29: 8393-8407. |
| [5] | Cai T, Zhao D, Gutmark E. Overview of fundamental kinetic mechanisms and emission mitigation in ammonia combustion[J]. Chemical Engineering Journal, 2023, 458: 141391. |
| [6] | Cardoso J S, Silva V, Rocha R, et al. Ammonia as an energy vector: current and future prospects for low-carbon fuel applications in internal combustion engines[J]. Journal of Cleaner Production, 2021, 296: 126562. |
| [7] | 毛晨林, 王平, Shrotriya Prashant, 等. 含氨燃料预混火焰的层流火焰速度及NO排放特性[J]. 化工学报, 2021, 72(10): 5330-5343. |
| Mao C L, Wang P, Shrotriya P, et al. Laminar flame speed and NO emission characteristics of premixed flames with different ammonia-containing fuels[J]. CIESC Journal, 2021, 72(10): 5330-5343. | |
| [8] | El-Adawy M, Nemitallah M, Abdelhafez A. Towards sustainable hydrogen and ammonia internal combustion engines: challenges and opportunities[J]. Fuel, 2024, 364: 131090. |
| [9] | Tornatore C, Marchitto L, Sabia P, et al. Ammonia as green fuel in internal combustion engines: state-of-the-art and future perspectives[J]. Frontiers in Mechanical Engineering, 2022, 8: 944201. |
| [10] | Zhang Z, Long W, Dong P, et al. Performance characteristics of a two-stroke low speed engine applying ammonia/diesel dual direct injection strategy[J]. Fuel, 2023, 332: 126086. |
| [11] | Zhang Z, Long W, Cui Z, et al. Visualization study on the ignition and diffusion combustion process of liquid phase ammonia spray ignited by diesel jet in a constant volume vessel[J]. Energy Conversion and Management, 2024, 299: 117889. |
| [12] | Klawitter M, Wüthrich S, Cartier P, et al. Ammonia as a fuel: optical investigation of turbulent flame propagation of NH3/air and NH3/H2/N2/air flames at engine conditions[J]. Fuel, 2024, 375: 132616. |
| [13] | 何灿星.火焰-壁面相互作用下氨/甲烷射流火焰的燃烧与排放特性研究[D]. 青岛: 青岛科技大学, 2024. |
| He C X. Study on combustion and emission characteristics of ammonia/methane jet flame with flame-wall interaction[D]. Qingdao: Qingdao University of Science and Technology, 2024. | |
| [14] | 金亦凡, 马志豪, 王鑫, 等. 二甲醚对氨着火特性的影响与动力学分析[J]. 内燃机学报, 2024, 42(3): 236-244. |
| Jin Y F, Ma Z H, Wang X, et al. Effect of dimethyl ether on ignition characteristics of ammonia and chemical kinetics[J]. Transactions of CSICE, 2024, 42(3): 236-244. | |
| [15] | Jin Y, Li X, Wang X, et al. Effect of dimethyl ether on ignition characteristics of ammonia and chemical kinetics[J]. Fuel, 2023, 343: 127885. |
| [16] | Tabibian S, Sharifzadeh M. Statistical and analytical investigation of methanol applications, production technologies, value-chain and economy with a special focus on renewable methanol[J]. Renewable and Sustainable Energy Reviews, 2023, 179: 113281. |
| [17] | Leonzio G, Foscolo P, Zondervan E, et al. Scenario analysis of carbon capture, utilization (particularly producing methane and methanol), and storage (CCUS) systems[J]. Industrial & Engineering Chemistry Research, 2020, 59(15): 6961-6976. |
| [18] | 杨协和, 沈文锋, 张扬, 等. 甲醇-空气层流火焰速度的数值研究和预测模型[J]. 化工学报, 2019, 70(8): 3011-3020. |
| Yang X H, Shen W F, Zhang Y, et al. Numerical investigation and prediction models for methanol-air laminar flame speed[J]. CIESC Journal, 2019, 70(8): 3011-3020. | |
| [19] | Basini L, Furesi F, Baumgärtl M, et al. CO2 capture and utilization (CCU) by integrating water electrolysis, electrified reverse water gas shift (E-RWGS) and methanol synthesis[J]. Journal of Cleaner Production, 2022, 377: 134280. |
| [20] | Wouters C, Burkardt P, Steeger F, et al. Comprehensive assessment of methanol as an alternative fuel for spark-ignition engines[J]. Fuel, 2023, 340: 127627. |
| [21] | Li X, Ma Z, Jin Y, et al. Effect of methanol blending on the high-temperature auto-ignition of ammonia: an experimental and modeling study[J]. Fuel, 2023, 339: 126911. |
| [22] | Li M, He X, Hashemi H, et al. An experimental and modeling study on auto-ignition kinetics of ammonia/methanol mixtures at intermediate temperature and high pressure[J]. Combustion and Flame, 2022, 242: 112160. |
| [23] | Zhang Q, Zhang R, Qi Y, et al. Ignition characteristics of ammonia-methanol blended fuel in a rapid compression machine[J]. Fuel, 2024, 368: 131636. |
| [24] | Wang Z, Han X, He Y, et al. Experimental and kinetic study on the laminar burning velocities of NH3 mixing with CH3OH and C2H5OH in premixed flames[J]. Combustion and Flame, 2021, 229: 111392. |
| [25] | Lu M, Long W, Cui Z, et al. Ammonia-methanol laminar combustion experiment and chemical kinetic modeling within broad range of ambient pressure[J]. Fuel, 2025, 385: 134129. |
| [26] | Zhuang Y, Wu R, Wang X, et al. An experimental and modeling study on the oxidation of ammonia-methanol mixtures in a jet stirred reactor[J]. Fuel, 2024, 356: 129628. |
| [27] | Zhan H, Shen S, Yin G, et al. High-pressure oxidation of an ammonia-methanol mixture: an experimental and modeling study[J]. Energy & Fuels, 2024, 38(23): 23091-23100. |
| [28] | Wang Z, Mei B, Liu N, et al. High pressure ammonia/methanol oxidation up to 100 atm[J]. Proceedings of the Combustion Institute, 2024, 40(1/2/3/4): 105489. |
| [29] | Gao Y, Li Y, Wei X, et al. A kinetic study of CO2 and H2O addition on NO formation for ammonia-methanol combustion[J]. Fuel, 2025, 381: 133283. |
| [30] | Wei F, Lu M, Long W, et al. Optical experiment study on ammonia/methanol mixture combustion performance induced by methanol jet ignition in a constant volume combustion bomb[J]. Fuel, 2023, 352: 129090. |
| [31] | Wang B, Wang H, Yang C, et al. Effect of different ammonia/methanol ratios on engine combustion and emission performance[J]. Applied Thermal Engineering, 2024, 236: 121519. |
| [32] | Uddeen K, Tang Q, Shi H, et al. Ammonia-methanol and ammonia-ethanol dual-fuel combustion in an optical spark-ignition engine: a multiple flame generation approach[J]. Applied Thermal Engineering, 2025, 265: 125544. |
| [33] | 左子农.合成气掺混燃料预混层流燃烧特性研究[D]. 天津: 天津大学, 2018. |
| Zuo Z N. Study on the premixed laminar combustion characteristics of syngas blended fuels[D]. Tianjin: Tianjin University, 2018. | |
| [34] | Huang Z, Zhang Y, Zeng K, et al. Measurements of laminar burning velocities for natural gas-hydrogen-air mixtures[J]. Combustion and Flame, 2006, 146(1/2): 302-311. |
| [35] | Kelley A, Law C. Nonlinear effects in the extraction of laminar flame speeds from expanding spherical flames[J]. Combustion and Flame, 2009, 156(9): 1844-1851. |
| [36] | Bertolino A, Fürst M, Stagni A, et al. An evolutionary, data-driven approach for mechanism optimization: theory and application to ammonia combustion[J]. Combustion and Flame, 2021, 229: 111366. |
| [37] | Osipova K, Sarathy S, Korobeinichev O, et al. Chemical structure of premixed ammonia/hydrogen flames at elevated pressures[J]. Combustion and Flame, 2022, 246: 112419. |
| [1] | 周运桃, 崔丽凤, 张杰, 于富红, 李新刚, 田野. Ga2O3调控CuCeO催化CO2加氢制甲醇的研究[J]. 化工学报, 2025, 76(8): 4042-4051. |
| [2] | 赵世颖, 左志帅, 贺梦颖, 安华良, 赵新强, 王延吉. Co-Pt/HAP的制备及其催化1,2-丙二醇氨化反应[J]. 化工学报, 2025, 76(7): 3305-3315. |
| [3] | 段浩, 王文超, 刘栋, 尹晓军, 胡二江, 曾科. 甲醇喷射时刻对甲醇/柴油双直喷发动机性能的影响[J]. 化工学报, 2025, 76(7): 3552-3560. |
| [4] | 周臣儒, 刘陈伟, 王志远, 綦民辉, 董三宝, 王翔宇, 李明忠. 甲醇和乙二醇对甲烷水合物黏附强度的影响[J]. 化工学报, 2025, 76(7): 3596-3604. |
| [5] | 卢煦旸, 徐强, 康浩鹏, 史健, 曹泽水, 郭烈锦. 化学链制氢系统中磁铁矿氧载体的CO还原特性研究[J]. 化工学报, 2025, 76(7): 3286-3294. |
| [6] | 李愽龙, 蒋雨希, 任傲天, 秦雯琪, 傅杰, 吕秀阳. TS-1/In-TS-1催化果糖一步法醇解制备乳酸甲酯连续化试验[J]. 化工学报, 2025, 76(6): 2678-2686. |
| [7] | 郭江悦, 常守金, 胡海涛. 水平管内甲醇流动冷凝数值模拟研究[J]. 化工学报, 2025, 76(6): 2580-2588. |
| [8] | 徐智超, 俞镇东, 吴昊峰, 吴沛文, 武洪翔, 巢艳红, 朱文帅, 刘植昌, 徐春明. 富酸位13X分子筛的制备及其超深度吸附脱除生物柴油中硫醇[J]. 化工学报, 2025, 76(5): 2198-2208. |
| [9] | 程刘惠美, 闫军营, 刘慧情, 王治澎, 王报英, 徐铜文, 汪耀明. 双极膜电渗析在醇水体系的应用研究进展[J]. 化工学报, 2025, 76(5): 1960-1972. |
| [10] | 李家顺, 李旺, 秦祖赠, 苏通明, 谢新玲, 纪红兵. 聚酰亚胺增强木质纤维素纳米纤丝气凝胶制备及其油水分离性能研究[J]. 化工学报, 2025, 76(5): 2169-2185. |
| [11] | 万俊, 宋佳芮, 范春煌, 魏乐乐, 聂依娜, 刘琳. 高效空穴转移助力光催化碱性甲醇-水溶液制氢[J]. 化工学报, 2025, 76(3): 1064-1075. |
| [12] | 党法璐, 孙志国, 高照, 王刚, 陈政宇, 张霖宙, 连竞存, 刘美佳, 张忠东, 刘超伟. 原油一步法催化裂解制低碳烯烃:实验和反应路径研究[J]. 化工学报, 2025, 76(2): 667-685. |
| [13] | 彭子林, 周蕾, 邓庆航, 叶光华, 周兴贵. 包含偏硅酸影响的3D NAND磷酸湿法刻蚀动力学[J]. 化工学报, 2025, 76(2): 645-653. |
| [14] | 吴雨轩, 常诚, 顾雪萍, 冯连芳, 张才亮. 面向立体异构的丁二烯乳液聚合过程模型化[J]. 化工学报, 2025, 76(2): 879-887. |
| [15] | 陈晗, 蔡畅, 刘红, 尹洪超. 正戊醇添加剂强化喷雾冷却传热实验研究[J]. 化工学报, 2025, 76(1): 131-140. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号