化工学报 ›› 2025, Vol. 76 ›› Issue (S1): 26-35.DOI: 10.11949/0438-1157.20241164
收稿日期:2024-10-21
修回日期:2024-10-29
出版日期:2025-06-25
发布日期:2025-06-26
通讯作者:
刘国强
作者简介:李银龙(1996—),男,博士研究生,412935610@qq.com
基金资助:
Yinlong LI(
), Guoqiang LIU(
), Gang YAN
Received:2024-10-21
Revised:2024-10-29
Online:2025-06-25
Published:2025-06-26
Contact:
Guoqiang LIU
摘要:
混合物制冷剂的分离效率是影响自复叠制冷循环性能的关键因素。分馏分离净化低沸点组分的同时减少了蒸发器内的制冷剂流量,可能造成循环性能的下降。提出一种分馏和闪蒸分离结合的自复叠制冷循环,在净化组分的同时增加了蒸发器内制冷剂流量。热力学分析结果表明,在设计工况下,新型循环蒸发器内低沸点组分质量分数和制冷剂质量流量相比基本循环分别提升5.37%和17.80%,分馏循环内蒸发器流量降低11.6%,新型循环的制冷系数(COP)和㶲效率相比基本循环分别提高26.33%和26.05%,分馏与闪蒸分离的结合形式提高了自复叠制冷循环性能。
中图分类号:
李银龙, 刘国强, 晏刚. 分馏与闪蒸分离耦合自复叠制冷循环性能分析[J]. 化工学报, 2025, 76(S1): 26-35.
Yinlong LI, Guoqiang LIU, Gang YAN. Perfromance assessment of auto-cascade cycle integrating fractionation and flash separation[J]. CIESC Journal, 2025, 76(S1): 26-35.
| 1 | Mota-Babiloni A, Mastani Joybari M, Navarro-Esbrí J, et al. Ultralow-temperature refrigeration systems: configurations and refrigerants to reduce the environmental impact[J]. International Journal of Refrigeration, 2020, 111: 147-158. |
| 2 | 刘鹏鹏, 盛伟, 焦中彦, 等. 自复叠制冷技术发展现状[J]. 制冷学报, 2015, 36(4): 45-51. |
| Liu P P, Sheng W, Jiao Z Y, et al. Development status of auto-cascade refrigeration technology[J]. Journal of Refrigeration, 2015, 36(4): 45-51. | |
| 3 | Yang S, Deng C W, Liu Z Q. Optimal design and analysis of a cascade LiBr/H2O absorption refrigeration/transcritical CO2 process for low-grade waste heat recovery[J]. Energy Conversion and Management, 2019, 192: 232-242. |
| 4 | 李银龙, 刘国强, 刘嘉瑞, 等. 自复叠制冷系统及其组分分离、迁移与调控研究进展[J]. 制冷学报, 2024, 45(1): 1-17. |
| Li Y L, Liu G Q, Liu J R, et al. Review of research progress on auto-cascade refrigeration systems and component separation, migration, and regulation[J]. Journal of Refrigeration, 2024, 45(1): 1-17. | |
| 5 | Sánchez D, Cabello R, Llopis R, et al. Energy assessment and environmental impact analysis of an R134a/R744 cascade refrigeration plant upgraded with the low-GWP refrigerants R152a, R1234ze(E), propane (R290) and propylene (R1270)[J]. International Journal of Refrigeration, 2019, 104: 321-334. |
| 6 | Qin Y B, Li N X, Zhang H, et al. Energy and exergy analysis of a Linde-Hampson refrigeration system using R170, R41 and R1132a as low-GWP refrigerant blend components to replace R23[J]. Energy, 2021, 229: 120645. |
| 7 | Qin Y B, Li N X, Zhang H, et al. Thermodynamic performance of a modified -150℃ refrigeration system coupled with Linde-Hampson and three-stage auto-cascade using low-GWP refrigerants[J]. Energy Conversion and Management, 2021, 236: 114093. |
| 8 | Kim S G, Kim M S. Experiment and simulation on the performance of an autocascade refrigeration system using carbon dioxide as a refrigerant[J]. International Journal of Refrigeration, 2002, 25(8): 1093-1101. |
| 9 | Yan G, Chen J H, Yu J L. Energy and exergy analysis of a new ejector enhanced auto-cascade refrigeration cycle[J]. Energy Conversion and Management, 2015, 105: 509-517. |
| 10 | Sivakumar M, Somasundaram P. Exergy and energy analysis of three stage auto refrigerating cascade system using Zeotropic mixture for sustainable development[J]. Energy Conversion and Management, 2014, 84: 589-596. |
| 11 | Rui S J, Zhang H, Zhang B H, et al. Experimental investigation of the performance of a single-stage auto-cascade refrigerator[J]. Heat and Mass Transfer, 2016, 52(1): 11-20. |
| 12 | Rodríguez-Jara E Á, Sánchez-de-la-Flor F J, Expósito-Carrillo J A, et al. Thermodynamic analysis of auto-cascade refrigeration cycles, with and without ejector, for ultra low temperature freezing using a mixture of refrigerants R600a and R1150[J]. Applied Thermal Engineering, 2022, 200: 117598. |
| 13 | Bai T, Yan G, Yu J L. Experimental research on the pull-down performance of an ejector enhanced auto-cascade refrigeration system for low-temperature freezer[J]. Energy, 2018, 157: 647-657. |
| 14 | Boyaghchi F A, Asgari S. A comparative study on exergetic, exergoeconomic and exergoenvironmental assessments of two internal auto-cascade refrigeration cycles[J]. Applied Thermal Engineering, 2017, 122: 723-737. |
| 15 | Gurudath Nayak H, Venkatarathnam G. Performance of an auto refrigerant cascade refrigerator operating in gas refrigerant supply (GRS) mode with nitrogen–hydrocarbon and argon–hydrocarbon refrigerants[J]. Cryogenics, 2009, 49(7): 350-359. |
| 16 | Wang Q, Liu R, Wang J P, et al. An investigation of the mixing position in the recuperators on the performance of an auto-cascade refrigerator operating with a rectifying column[J]. Cryogenics, 2012, 52(11): 581-589. |
| 17 | 苑佳佳, 王林, 谈莹莹, 等. 自复叠双压缩制冷循环特性研究[J]. 工程热物理学报, 2022, 43(11): 2886-2892. |
| Yuan J J, Wang L, Tan Y Y, et al. Study on an auto-cascade parallel-compression refrigeration cycle[J]. Journal of Engineering Thermophysics, 2022, 43(11): 2886-2892. | |
| 18 | 潘垚池, 刘金平, 许雄文, 等. 自复叠制冷系统降温过程组分浓度优化及控制策略[J]. 化工学报, 2017, 68(8): 3152-3160. |
| Pan Y C, Liu J P, Xu X W, et al. Component concentration optimization analysis of cooling process and control strategy in auto-cascade refrigeration system[J]. CIESC Journal, 2017, 68(8): 3152-3160. | |
| 19 | Li Y L, Liu G Q, Chen Q, et al. Progress of auto-cascade refrigeration systems performance improvement: composition separation, shift and regulation[J]. Renewable and Sustainable Energy Reviews, 2023, 187: 113664. |
| 20 | Wang Q, Cui K, Sun T F, et al. Performance of a single-stage auto-cascade refrigerator operating with a rectifying column at the temperature level of -60℃[J]. Journal of Zhejiang University: Science A, 2011, 12(2): 139-145. |
| 21 | Wang Q, Song Q, Zhang J P, et al. Performance analyses on four configurations of natural gas liquefaction process operating with mixed refrigerants and a rectifying column[J]. Cryogenics, 2019, 97: 13-21. |
| 22 | Wang Q, Li D H, Wang J P, et al. Numerical investigations on the performance of a single-stage auto-cascade refrigerator operating with two vapor-liquid separators and environmentally benign binary refrigerants[J]. Applied Energy, 2013, 112: 949-955. |
| 23 | Zhang L, Xu S M, Du P, et al. Experimental and theoretical investigation on the performance of CO2/propane auto-cascade refrigerator with a fractionation heat exchanger[J]. Applied Thermal Engineering, 2015, 87: 669-677. |
| 24 | Liu J R, Liu Y, Yan G, et al. Thermodynamic analysis on a modified auto-cascade refrigeration cycle with a self-recuperator[J]. International Journal of Refrigeration, 2022, 137: 117-128. |
| 25 | Liu J R, Liu Y, Yan G, et al. Theoretical study on a modified single-stage autocascade refrigeration cycle with auxiliary phase separator[J]. International Journal of Refrigeration, 2021, 122: 181-191. |
| 26 | Tan Y Y, Li X Z, Wang L, et al. Thermodynamic performance of the fractionated auto-cascade refrigeration cycle coupled with two-phase ejector using R1150/R600a at -80℃ temperature level[J]. Energy, 2023, 281: 128328. |
| 27 | Liu J R, Liu Y, Yu J L, et al. Thermodynamic analysis of a novel ejector-enhanced auto-cascade refrigeration cycle[J]. Applied Thermal Engineering, 2022, 200: 117636. |
| 28 | Shi R X, Bai T, Wan J H. Performance analysis of a dual-ejector enhanced two-stage auto-cascade refrigeration cycle for ultra-low temperature refrigeration[J]. Applied Thermal Engineering, 2024, 240: 122152. |
| 29 | Liu S L, Bai T, Wei Y, et al. Performance analysis of a modified ejector-enhanced auto-cascade refrigeration cycle[J]. Energy, 2023, 265: 126334. |
| 30 | Lemmon E W, Bell I H, Huber M L, et al. NIST standard reference database 23: reference fluid thermodynamic and transport properties – REFPROP. Version 10[DB]. Gaithersburg: National Institute of Standards and Technology, Standard Reference Data Program, 2018. |
| [1] | 刘豪, 王林, 丁昊, 耿嘉怡. R1150+R1234ze(E)二元体系223.15~253.15 K汽液相平衡研究[J]. 化工学报, 2025, 76(S1): 1-8. |
| [2] | 苏伟, 赵大海, 金旭, 刘忠彦, 李静, 张小松. 吸湿液滴与混合润湿性表面协同抑霜特性研究[J]. 化工学报, 2025, 76(S1): 140-151. |
| [3] | 臧子晴, 李修真, 谈莹莹, 刘晓庆. 分凝器对两级分离自复叠制冷循环特性影响研究[J]. 化工学报, 2025, 76(S1): 17-25. |
| [4] | 裴星亮, 叶翠平, 裴赢丽, 李文英. 碱改性MIL-53(Cr)选择性吸附分离二甲苯异构体[J]. 化工学报, 2025, 76(S1): 258-267. |
| [5] | 张耀辉, 班宇杰, 杨维慎. 以蒸气加工法制备和修饰金属-有机框架膜[J]. 化工学报, 2025, 76(5): 2070-2086. |
| [6] | 杨雅南, 常胜然, 薛松林, 潘建明, 邢卫红. 基于光、电驱动促进海水中铀和锂提取的研究进展[J]. 化工学报, 2025, 76(5): 1927-1942. |
| [7] | 杨紫博, 王有发, 岳寒松, 远双杰, 耿付江, 李晴晴, 奥德, 李斌, 叶茂, 顾振杰, 乔志华. MOF玻璃基气体分离膜的研究进展[J]. 化工学报, 2025, 76(5): 2158-2168. |
| [8] | 牛宏斌, 邱丽, 杨景轩, 张忠林, 郝晓刚, 赵忠凯, 阿布里提, 官国清. 筒体直径对旋风分离器性能的影响及其流场机制[J]. 化工学报, 2025, 76(5): 2367-2376. |
| [9] | 朱迪, 高守建, 方望熹, 靳健. 水蒸气诱导相分离构筑海绵孔结构超亲水聚醚砜膜及其油/水乳液分离性能研究[J]. 化工学报, 2025, 76(5): 2397-2409. |
| [10] | 何燎, 李俊, 高梦舒, 刘东阳, 张宇豪, 赵亮, 高金森, 徐春明. 石油烃中芳烃分离技术研究进展[J]. 化工学报, 2025, 76(5): 1909-1926. |
| [11] | 徐泽海, 刘超, 张国亮. 聚合物基疏水渗透汽化膜及其溶剂回收应用[J]. 化工学报, 2025, 76(5): 2055-2069. |
| [12] | 拓振光, 李荣亮, 康绍辉, 牛玉清, 周志全, 叶开凯, 马海桃, 刘顺, 李洪, 高鑫. 静态法测定WF6-MoF6体系汽液相平衡数据的误差分析与修正[J]. 化工学报, 2025, 76(5): 2270-2278. |
| [13] | 李家顺, 李旺, 秦祖赠, 苏通明, 谢新玲, 纪红兵. 聚酰亚胺增强木质纤维素纳米纤丝气凝胶制备及其油水分离性能研究[J]. 化工学报, 2025, 76(5): 2169-2185. |
| [14] | 胡嘉朗, 姜明源, 金律铭, 张永刚, 胡鹏, 纪红兵. 机器学习辅助MOFs高通量计算筛选及气体分离研究进展[J]. 化工学报, 2025, 76(5): 1973-1996. |
| [15] | 茅雨洁, 路晓飞, 锁显, 杨立峰, 崔希利, 邢华斌. 工业气体中微量氧深度脱除催化剂研究进展[J]. 化工学报, 2025, 76(5): 1997-2010. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号