• •
肖翩翩1(
), 卓超越1, 张跃飞1(
), 李子怡1(
), 罗潇2, 梁志武2
收稿日期:2025-09-12
修回日期:2025-10-23
出版日期:2025-11-17
通讯作者:
张跃飞,李子怡
作者简介:肖翩翩(2000—),女,硕士研究生,1900413329@qq.com
基金资助:
Pianpian XIAO1(
), Chaoyue ZHUO1, Yuefei ZHANG1(
), Ziyi LI1(
), Xiao LUO2, Zhiwu LIANG2
Received:2025-09-12
Revised:2025-10-23
Online:2025-11-17
Contact:
Yuefei ZHANG, Ziyi LI
摘要:
提升金属有机框架材料(MOF-74)的CO2吸附容量与稳定性是碳捕集领域的关键挑战。研究制备了不同金属中心(Mg、Ni)和不同配体的MOF-74,并进行胺改性,筛选短链乙醇胺(MEA)、长链四乙烯五胺(TEPA)及TEPA&Py(1:1)复合胺三类改性剂,并系统评价了CO2吸附性能。改性后材料性能显著提升:MEA、TEPA及TEPA:Py(1:1)分别将CO2吸附容量提升至原始MOF-74的1.4倍、1.9倍和5.0倍。五次吸附-脱附循环后,改性吸附剂保持>95%的初始容量,证实其优异的循环稳定性与空气稳定性。本研究揭示了胺改性可显著强化MOF-74的CO2捕集性能,但需控制负载量以避免过量胺引发的强碱性环境导致的性能衰减,为设计高效胺改性MOF吸附剂提供了理论依据与优化策略。
中图分类号:
肖翩翩, 卓超越, 张跃飞, 李子怡, 罗潇, 梁志武. 分级胺改性MOF-74的CO2吸附性能及机理研究[J]. 化工学报, DOI: 10.11949/0438-1157.20251032.
Pianpian XIAO, Chaoyue ZHUO, Yuefei ZHANG, Ziyi LI, Xiao LUO, Zhiwu LIANG. Research on the CO2 Adsorption Performance and Mechanism of Hierarchically Amine-Modified MOF-74[J]. CIESC Journal, DOI: 10.11949/0438-1157.20251032.
| [1] | Ghanbari T, Abnisa F, Wan Daud W M A. A review on production of metal organic frameworks (MOF) for CO2 adsorption[J]. Science of the Total Environment, 2020, 707: 135090. |
| [2] | Boyd P G, Chidambaram A, García-Díez E, et al. Data-driven design of metal–organic frameworks for wet flue gas CO2 capture[J]. Nature, 2019, 576(7786): 253-256. |
| [3] | Zhao B T, Tao W W, Zhong M, et al. Process, performance and modeling of CO2 capture by chemical absorption using high gravity: a review[J]. Renewable and Sustainable Energy Reviews, 2016, 65: 44-56. |
| [4] | Kong M, Song L J, Liao H P, et al. A review on development of post-combustion CO2 capture technologies: Performance of carbon-based, zeolites and MOFs adsorbents[J]. Fuel, 2024, 371: 132103. |
| [5] | Sai Bhargava Reddy M, Ponnamma D, Sadasivuni K K, et al. Carbon dioxide adsorption based on porous materials[J]. RSC Advances, 2021, 11(21): 12658-12681. |
| [6] | Brea P, Delgado J A, Águeda V I, et al. Comparison between MOF UTSA-16 and BPL activated carbon in hydrogen purification by PSA[J]. Chemical Engineering Journal, 2019, 355: 279-289. |
| [7] | Zuo K C, Huang X C, Liu X C, et al. A hybrid metal–organic framework–reduced graphene oxide nanomaterial for selective removal of chromate from water in an electrochemical process[J]. Environmental Science & Technology, 2020, 54(20): 13322-13332. |
| [8] | Radwan A, Jin H H, He D P, et al. Design engineering, synthesis protocols, and energy applications of MOF-derived electrocatalysts[J]. Nano-Micro Letters, 2021, 13(1): 132. |
| [9] | Guo L, Tang Y X, Wang L, et al. Synergetic antibacterial nanoparticles with broad-spectrum for wound healing and lung infection therapy[J]. Advanced Functional Materials, 2024, 34(39): 2403188. |
| [10] | 李建惠, 兰天昊, 陈杨, 等. MOF复合材料在气体吸附分离中的研究进展[J]. 化工学报, 2021, 72(1): 167-179. |
| Li J H, Lan T H, Chen Y, et al. Research progress of MOF-based composites for gas adsorption and separation[J]. CIESC Journal, 2021, 72(1): 167-179. | |
| [11] | 鲁雪婷, 蒲彦锋, 李磊, 等. 氨基修饰的金属有机框架Cu3(BTC)2的制备及其CO2吸附性能研究[J]. 燃料化学学报, 2019, 47(3): 338-343. |
| Lu X T, Pu Y F, Li L, et al. Preparation of metal-organic frameworks Cu3(BTC)2 with amino-functionalization for CO2 adsorption[J]. Journal of Fuel Chemistry and Technology, 2019, 47(3): 338-343. | |
| [12] | Jiang K, Yang J, Zhou Y X, et al. Synergetic enhancement of CO2 direct air capture with monoethanolamine-impregnated MIL-101(Cr) MOFs[J]. Microporous and Mesoporous Materials, 2024, 366: 112920. |
| [13] | Nachimuthu S, Su M S, Wu L T, et al. Tunable CO2 capture in N-ethylethylenediamine functionalized Mg2-MOF-74: unraveling the role of diamine basicity in reactivity and adsorption capacity[J]. Chemical Engineering Journal, 2025, 515: 163587. |
| [14] | Chen X, Menon D, Wang X L, et al. Flexibility-frustrated porosity for enhanced selective CO2 adsorption in an ultramicroporous metal-organic framework[J]. Chem, 2025, 11(7): 102382. |
| [15] | Choi H J, Min J G, Ahn S H, et al. Framework flexibility-driven CO2 adsorption on a zeolite[J]. Materials Horizons, 2020, 7(6): 1528-1532. |
| [16] | Lim J, Lee S, Sharma A, et al. Ligand functionalization of defect-engineered Ni-MOF-74[J]. RSC Advances, 2022, 12(48): 31451-5 |
| [17] | 梁碧麟, 余倩, 贾思琦, 等. Ni-MOF-74金属有机框架膜的结构调变及气体分离性能研究[J]. 化工学报, 2025, 76(6): 2714-2721. |
| Liang B L, Yu Q, Jia S Q, et al. Structural modulation and gas separation performance of Ni-MOF-74 metal-organic framework membranes[J]. CIESC Journal, 2025, 76(6): 2714-2721. | |
| [18] | Esfahani H J, Ghaemi A, Shahhosseini S. Improving CO2 adsorption efficiency of an amine-modified MOF-808 through the synthesis of its graphene oxide composites[J]. Scientific Reports, 2024, 14: 18871. |
| [19] | Ma M D, Zhou A N, Hong T, et al. Tailored porous structure and CO2 adsorption capacity of Mg-MOF-74 via solvent polarity regulation[J]. Chemical Engineering Journal, 2023, 476: 146845. |
| [20] | Millward A R, Yaghi O M. Metal-Organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature[J]. Journal of the American Chemical Society, 2005, 127(51): 17998-17999. |
| [21] | Darunte L A, Terada Y, Murdock C R, et al. Monolith-supported amine-functionalized Mg2(dobpdc) adsorbents for CO2 capture[J]. ACS Applied Materials & Interfaces, 2017, 9(20): 17042-17050. |
| [22] | Siegelman R L, McDonald T M, Gonzalez M I, et al. Controlling cooperative CO2 adsorption in diamine-appended Mg2(dobpdc) metal–organic frameworks[J]. Journal of the American Chemical Society, 2017, 139(30): 10526-10538. |
| [23] | Jiang X T, Bai L J, Wang S, et al. Novel amine-functionalized Mg-MOF CO2 adsorbents with bi-functional adsorption-screening[J]. Journal of Materials Chemistry A, 2025, 13(15): 10825-10831. |
| [24] | Mahajan S, Elfving J, Lahtinen M. Evaluating the viability of ethylenediamine-functionalized Mg-MOF-74 in direct air capture: The challenges of stability and slow adsorption rate[J]. Journal of Environmental Chemical Engineering, 2024, 12(2): 112193. |
| [25] | Zhao M, Ban Y J, Chang Z, et al. Pyrazine-interior-embodied MOF-74 for selective CO2 adsorption[J]. AIChE Journal, 2022, 68(3): e17528. |
| [26] | Zhang H Y, Yang C, Geng Q, et al. Adsorption of hydrogen sulfide by amine-functionalized metal organic framework (MOF-199): an experimental and simulation study[J]. Applied Surface Science, 2019, 497: 143815. |
| [27] | Jayasundara T, Perera I, Hettiarachchi C. Fine-tuning electronic and semiconducting properties of Co-MOF-74 upon encapsulating aniline and its derivatives[J]. Materials Chemistry and Physics, 2025, 332: 130292. |
| [28] | Gaikwad S, Kim Y, Gaikwad R, et al. Enhanced CO2 capture capacity of amine-functionalized MOF-177 metal organic framework[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105523. |
| [29] | Cartagenova D, Peixoto Esteves F A, Fischer N T, et al. Solvent-dependent textural properties of defective UiO-66 after acidic and basic treatment[J]. Inorganic Chemistry Frontiers, 2022, 9(1): 70-77. |
| [30] | Chen J X, Zhang Z X, Han J, et al. A simple one-step method to synthesize PVDF-PG/KH792 membrane for separation of oil-in-water emulsions[J]. Journal of Water Process Engineering, 2021, 41: 101996. |
| [31] | Wu C H, Chu X X, Wu X L, et al. Size and morphology control over MOF-74 crystals[J]. RSC Advances, 2024, 14(29): 20604-20608. |
| [32] | Gygi D, Bloch E D, Mason J A, et al. Hydrogen storage in the expanded pore metal–organic frameworks M2(dobpdc) (M = Mg, Mn, Fe, Co, Ni, Zn)[J]. Chemistry of Materials, 2016, 28(4): 1128-1138. |
| [33] | Cao Y, Song F J, Zhao Y X, et al. Capture of carbon dioxide from flue gas on TEPA-grafted metal-organic framework Mg2(dobdc)[J]. Journal of Environmental Sciences, 2013, 25(10): 2081-2087. |
| [34] | Wang J T, Long D H, Zhou H H, et al. Surfactant promoted solid amine sorbents for CO2 capture[J]. Energy & Environmental Science, 2012, 5(2): 5742-5749. |
| [35] | Jun H J, Yoo D K, Jhung S H. Metal-organic framework (MOF-808) functionalized with ethyleneamines: Selective adsorbent to capture CO2 under low pressure[J]. Journal of CO2 Utilization, 2022, 58: 101932. |
| [36] | Wood O G, Hawes C S. Fused aza-heterocyclic ligands: expanding the MOF chemist's toolbox[J]. CrystEngComm, 2022, 24(47): 8197-8207. |
| [37] | 肖翩翩, 卓超越, 钟瑾荣, 等. 用于CO2捕获的金属有机框架材料改性研究进展[J]. 化工进展, 2024, 43(12): 6944-6956. |
| Xiao P P, Zhuo C Y, Zhong J R, et al. Recent advances on modification of metal-organic frameworks for CO2 capture[J]. Chemical Industry and Engineering Progress, 2024, 43(12): 6944-6956. | |
| [38] | 张所瀛, 刘红, 刘朋飞, 等. 金属有机骨架材料在CO2/CH4吸附分离中的研究进展[J]. 化工学报, 2014, 65(05): 1563-1570. |
| Zhang S Y, Liu H, Liu P F, et al. Research progress of organometallic skeleton materials in adsorption and separation of CO2/CH4 [J]. 2014(5): 1563-1570. | |
| [39] | Loughran R P, Hurley T, Gładysiak A, et al. CO2 capture from wet flue gas using a water-stable and cost-effective metal-organic framework[J]. Cell Reports Physical Science, 2023, 4(7): 101470. |
| [1] | 吴梓航, 徐震原, 游锦方, 潘权稳, 王如竹. 基于吸附式储冷技术的深井钻探设备冷却系统[J]. 化工学报, 2025, 76(S1): 309-317. |
| [2] | 史松伟, 赵诚, 刘帅, 应雨轩, 严密. 富铁飞灰耦合Fe-Zn/Al2O3脱除沼气H2S研究[J]. 化工学报, 2025, 76(8): 4239-4247. |
| [3] | 田宇红, 杜壮壮, 徐慧芳, 祝自强, 王宇聪. ZIF-8基多孔液体制备及其SO2吸附性能[J]. 化工学报, 2025, 76(8): 4284-4296. |
| [4] | 梁碧麟, 余倩, 贾思琦, 李芳, 李其明. Ni-MOF-74金属有机框架膜的结构调变及气体分离性能研究[J]. 化工学报, 2025, 76(6): 2714-2721. |
| [5] | 谈朋, 李雪梅, 刘晓勤, 孙林兵. 基于柔性MOFs的磁响应复合材料及其丙烯吸附性能研究[J]. 化工学报, 2025, 76(5): 2230-2240. |
| [6] | 巴雅琪, 吴涛, 邸安頔, 陆安慧. 多孔炭材料用于低碳烃分离的研究进展[J]. 化工学报, 2025, 76(5): 2136-2157. |
| [7] | 唐磊, 王振菲, 李聪利, 杨佳辉, 郑浩, 石琪, 董晋湘. Co-MOF-74和Mg-MOF-74的CO工作吸附容量及操作条件[J]. 化工学报, 2025, 76(5): 2279-2293. |
| [8] | 郭彭涛, 王婷, 薛波, 应允攀, 刘大欢. 用于CH4/N2分离的多吸附位点超微孔MOF[J]. 化工学报, 2025, 76(5): 2304-2312. |
| [9] | 贾晶宇, 孔德齐, 沈圆辉, 张东辉, 李文彬, 唐忠利. 合成氨反应器尾气变压吸附氨分离工艺的模拟与分析[J]. 化工学报, 2025, 76(2): 718-730. |
| [10] | 陈彦霖, 周爱国, 郑家乐, 杨川箬, 葛天舒. 载体对于胺浸渍类DAC吸附剂性能的影响[J]. 化工学报, 2024, 75(S1): 217-222. |
| [11] | 唐宇昊, 张迎迎, 赵智伟, 鲁梦悦, 张飞飞, 王小青, 杨江峰. 弱极性超微孔Sc/In-CPM-66A用于CH4/N2吸附分离性能[J]. 化工学报, 2024, 75(9): 3210-3220. |
| [12] | 王涛虹, 王超, 李政, 刘莹, 田歌, 常刚刚, 阳晓宇, 鲍宗必. 固载Cu(Ⅰ)的π络合MOF吸附剂用于乙烷/乙烯的选择性分离[J]. 化工学报, 2024, 75(7): 2565-2573. |
| [13] | 王岩, 周佳文, 孙培亮, 陈勇, 齐元红, 彭冲. 磁性聚氨基噻唑吸附剂脱除水体Hg2+性能[J]. 化工学报, 2024, 75(6): 2283-2298. |
| [14] | 冀钟, 赵彦玲, 陈雨濛, 高林霞, 王翼鹏, 刘欢. ZSM-5分子筛对典型涂装VOCs的吸附性能及机理研究[J]. 化工学报, 2024, 75(6): 2332-2343. |
| [15] | 刘莹, 郑芳, 杨启炜, 张治国, 任其龙, 鲍宗必. 二甲苯异构体吸附分离研究进展[J]. 化工学报, 2024, 75(4): 1081-1095. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号