• •
禹兴海1,2,3(
), 张永文2, 李艳安1,3, 李月文1,3, 邵文辉1,2
收稿日期:2025-09-03
修回日期:2025-10-24
出版日期:2025-11-25
通讯作者:
禹兴海
作者简介:禹兴海(1977—),男,博士,教授,Xinghaiyu@hxu.edu.cn
基金资助:
Xinghai YU1,2,3(
), Yongwen ZHANG2, Yan'an LI1,3, Yuewen LI1,3, Wenhui SHAO1,2
Received:2025-09-03
Revised:2025-10-24
Online:2025-11-25
Contact:
Xinghai YU
摘要:
以农产品废弃物玉米秸秆为生物质前体,经高温热解、KOH刻蚀得到富含多孔结构的生物炭(KBC),利用改进的Hummers法制备氧化石墨烯。通过水热自组装将二者结合,构建了生物炭/还原氧化石墨烯杂化气凝胶(KBC/r-GO),再将有机相变材料正十八烷(ODE)通过真空熔融浸渍的方式封装于杂化气凝胶中,得到石墨烯增强的生物炭/正十八烷定型复合相变材料(KBC/r-GO/ODE)。通过SEM、FT-IR、TGA、DSC等表征手段对其微观结构、形貌和储热性能以及热稳定性进行了研究,发现当KBC/r-GO与ODE的质量比为1:2时,所制备的定型复合相变材料呈现出高负载、无渗漏的特点,其熔融焓高达104.3 J/g,经100次吸、放热循环后仍保持了结构稳定,未出现液体泄露现象,表现出良好的储热性能和热稳定性。此外,由于石墨烯优异的导热、导电性和光热捕获能力,赋予KBC/r-GO/ODE优异的光热、电热转换能力和良好的红外伪装性能。因此KBC/r-GO/ODE在清洁能源转化和存储利用、热管理、红外隐身等方面具有应用前景。
中图分类号:
禹兴海, 张永文, 李艳安, 李月文, 邵文辉. 石墨烯增强的生物炭/正十八烷定型复合相变材料制备及性能研究[J]. 化工学报, DOI: 10.11949/0438-1157.20250984.
Xinghai YU, Yongwen ZHANG, Yan'an LI, Yuewen LI, Wenhui SHAO. Preparation and properties of graphene enhanced biochar/ n-octadecane composite phase change materials[J]. CIESC Journal, DOI: 10.11949/0438-1157.20250984.
| BC | KBC(1:3) | KBC(1:4) | KBC(1:5) | r-GO | KBC/r-GO | |
|---|---|---|---|---|---|---|
| BET surface(m2/g) | 3.62 | 1279.14 | 1507.41 | 1976.48 | 1.81 | 1993.81 |
| Total volume in pores(cm3/g) | 0.004 | 0.71 | 0.83 | 1.03 | 0.002 | 1.07 |
| DFT pore size(nm) | 2.15 | 28.30 | 31.66 | 37.84 | 1.26 | 38.73 |
| Micropore volume(cm3/g) | 0.000 | 0.22 | 0.12 | 0.09 | 0.00 | 0.14 |
| Mesoporous volume(cm3/g) | 0.002 | 0.37 | 0.53 | 0.92 | 0.001 | 0.87 |
表1 比表面积及孔径数据对比
Table 1 Comparison of specific surface area and pore size data
| BC | KBC(1:3) | KBC(1:4) | KBC(1:5) | r-GO | KBC/r-GO | |
|---|---|---|---|---|---|---|
| BET surface(m2/g) | 3.62 | 1279.14 | 1507.41 | 1976.48 | 1.81 | 1993.81 |
| Total volume in pores(cm3/g) | 0.004 | 0.71 | 0.83 | 1.03 | 0.002 | 1.07 |
| DFT pore size(nm) | 2.15 | 28.30 | 31.66 | 37.84 | 1.26 | 38.73 |
| Micropore volume(cm3/g) | 0.000 | 0.22 | 0.12 | 0.09 | 0.00 | 0.14 |
| Mesoporous volume(cm3/g) | 0.002 | 0.37 | 0.53 | 0.92 | 0.001 | 0.87 |
| 样品 | 熔融温度Tm(℃) | 熔融焓值ΔHm(J/g) | 结晶温度Tf(℃) | 结晶焓值ΔHf(J/g) | |
|---|---|---|---|---|---|
| 纯ODE | 28.0 | 190.9 | 25.6 | 190.3 | |
| 1:1 | 27.1 | 24.15 | 25.0 | 23.83 | |
| 1:1.5 | 27.7 | 63.06 | 25.4 | 61.58 | |
| 1:2 | 27.9 | 104.3 | 26.0 | 103.5 | |
表2 纯ODE与KBC/r-GO/ODE的DSC数据
Tab.2 The DSC data of pure ODE and KBC/r-GO/ODE
| 样品 | 熔融温度Tm(℃) | 熔融焓值ΔHm(J/g) | 结晶温度Tf(℃) | 结晶焓值ΔHf(J/g) | |
|---|---|---|---|---|---|
| 纯ODE | 28.0 | 190.9 | 25.6 | 190.3 | |
| 1:1 | 27.1 | 24.15 | 25.0 | 23.83 | |
| 1:1.5 | 27.7 | 63.06 | 25.4 | 61.58 | |
| 1:2 | 27.9 | 104.3 | 26.0 | 103.5 | |
| [1] | Xu H J, Han X C, Hua W S, et al. Progress on thermal storage technologies with high heat density in renewables and low carbon applications: Latent and thermochemical energy storage[J]. Renewable and Sustainable Energy Reviews, 2025, 215: 115587. |
| [2] | Chu H Q, Huang Z, Zhang Z K, et al. Integration of carbon emission reduction policies and technologies: Research progress on carbon capture, utilization and storage technologies[J]. Separation and Purification Technology, 2024, 343: 127153. |
| [3] | 王迪, 陈伟倩, 孙灵芳, 等. 光热-跨临界压缩二氧化碳储能循环动态特性研究[J]. 化工学报, 2024, 75(5): 2047-2059. |
| Wang D, Chen W Q, Sun L F, et al. Research of dynamic characteristics of photothermal coupled transcritical compressed carbon dioxide energy storage cycle[J]. CIESC Journal, 2024, 75(5): 2047-2059. | |
| [4] | Zhang X Y, Zhou S M, Liu W Q, et al. Fabrication of structure-improved, sintering-resistant Li4SiO4 materials for stabilized thermochemical energy storage in concentrated solar power plants[J]. Journal of Energy Storage, 2023, 70: 108078. |
| [5] | Li Z, Lu Y J, Huang R, et al. Applications and technological challenges for heat recovery, storage and utilisation with latent thermal energy storage[J]. Applied Energy, 2021, 283: 116277. |
| [6] | 肖俊兵, 钟湘宇, 任建地, 等. 基于生物碳材料强化的硬脂酸相变材料储热性能研究[J]. 化工学报, 2025, 76(3): 1312-1322. |
| Xiao J B, Zhong X Y, Ren J D, et al. Research on the heat storage properties of stearic acid phase change materials enhanced by bio-carbon materials[J]. CIESC Journal, 2025, 76(3): 1312-1322. | |
| [7] | 翟祥瑞, 张伟, 张倩倩, 等. 基于外场扰动的固液相变储能主动强化换热技术[J]. 化工学报, 2025, 76(4): 1432-1446. |
| Zhai X R, Zhang W, Zhang Q Q, et al. Active heat transfer enhancement technology for solid-liquid phase change energy storage based on external field disturbance[J]. CIESC Journal, 2025, 76(4): 1432-1446. | |
| [8] | Zhou Y, Zhou Z J, Sun J, et al. Ruddlesden-Popper-type perovskite Sr3Fe2O7- δ for enhanced thermochemical energy storage[J]. EcoMat, 2023, 5(7): e12347. |
| [9] | 安明泽, 张兵兵, 王盛, 等. 碳基定型复合相变材料的研究进展[J]. 化工进展, 2025, 44(4): 2102-2118. |
| An M Z, Zhang B B, Wang S, et al. Research progress on carbon-based stereotyped composite phase change materials[J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2102-2118. | |
| [10] | 舒钊, 钟珂, 肖鑫, 等. 多孔纳米基复合相变材料在建筑节能中的应用进展[J]. 化工进展, 2021, 40(S2): 265-278. |
| Shu Z, Zhong K, Xiao X, et al. Recent progress in application of composite phase change materials with nanoparticles matrix for energy savings of buildings[J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 265-278. | |
| [11] | 何起帆, 吴闽强, 李廷贤, 等. 正十八烷/OBC/EG复合定型相变材料制备及热物性[J]. 化工学报, 2021, 72(S1): 539-545. |
| He Q F, Wu M Q, Li T X, et al. Preparation and thermophysical properties of octadecane/OBC/EG composite shaped phase change material[J]. CIESC Journal, 2021, 72(S1): 539-545. | |
| [12] | 王琴, 孙浩焱, 王元元, 等. 石墨烯/正十八烷复合相变材料制备及导热性能研究[J]. 计量学报, 2025, 46(4): 511-517. |
| Wang Q, Sun H Y, Wang Y Y, et al. Preparation and thermal conductivity of graphene/N-octadecane composite phase change materials[J]. Acta Metrologica Sinica, 2025, 46(4): 511-517. | |
| [13] | Lu X T, Qian R D, Xu X Y, et al. Modifications of microencapsulated phase change materials: Supercooling suppression, thermal conductivity enhancement and stability improvement[J]. Nano Energy, 2024, 124: 109520. |
| [14] | Liu K, Yuan Z F, Zhao H X, et al. Properties and applications of shape-stabilized phase change energy storage materials based on porous material suppor: a review[J]. Materials Today Sustainability, 2023, 21: 100336. |
| [15] | Li D W, Yan X L, Pang Y N, et al. Facile coating of micron/submicron Si with N-doped porous carbons to yield Si/C composites with good long-cycle stability[J]. Journal of Alloys and Compounds, 2023, 965: 171375. |
| [16] | Zhang Z B, Li J, Meng N, et al. Simultaneously-efficient electro-sorption of Pb(Ⅱ), Cu(Ⅱ) and Cd(Ⅱ) by Cu2+ modified superactive carbons[J]. Separation and Purification Technology, 2024, 338: 126604. |
| [17] | Xie D, Huang J C, Wang Z Q, et al. Activated carbon derived from hydrochar of food waste for supercapacitor: Effect of components on electrochemical performance[J]. Fuel Processing Technology, 2023, 244: 107691. |
| [18] | Li D W, Pang Y N, Meng N, et al. Use of steam to prepare super active carbon with large pore volume for efficient capacitive deionization[J]. Diamond and Related Materials, 2023, 139: 110338. |
| [19] | Chai Z C, Fang M H, Min X. Composite phase-change materials for photo-thermal conversion and energy storage:a review[J]. Nano Energy, 2024, 124: 109437. |
| [20] | Chen X, Cheng P, Tang Z D, et al. Carbon-based composite phase change materials for thermal energy storage, transfer, and conversion[J]. Advanced Science, 2021, 8(9): 2001274. |
| [21] | 冯利利, 侯玉星, 余润翔, 等.. 多孔炭基定形相变储热材料的研究进展[J]. 煤炭学报, 2022, 47(9): 3328-3338. |
| Feng L L, Hou Y X, Yu R X, et al. A review of porous carbon-based shape-stabilized phase change materials for heat storage[J]. Journal of China Coal Society, 2022, 47(9): 3328-3338. | |
| [22] | Herath A, Layne C A, Perez F, et al. KOH-activated high surface area Douglas Fir biochar for adsorbing aqueous Cr(VI), Pb(II) and Cd(II)[J]. Chemosphere, 2021, 269: 128409. |
| [23] | Wang S L, Huang Q, Sun Z H, et al. Porous carbon network-based composite phase change materials with heat storage capacity and thermal management functions[J]. Carbon, 2024, 226: 119174. |
| [24] | Li M, Mu B Y. Effect of different dimensional carbon materials on the properties and application of phase change materials: a review[J]. Applied Energy, 2019, 242: 695-715. |
| [25] | Ren Y X, Jin F, Yang L S, et al. Emerging porous supporting materials for form-stable organic phase change materials[J]. Sustainable Materials and Technologies, 2025, 45: e01440. |
| [26] | Choi J Y, Nam J, Kim Y U, et al. Sustainable hybrid solution to enhancing thermal transport of PCMs using carbon nanomaterial-modified biowaste-derived biochar[J]. Sustainable Energy Technologies and Assessments, 2025, 82: 104509. |
| [27] | Atinafu D G, Wi S, Yun B Y, et al. Engineering biochar with multiwalled carbon nanotube for efficient phase change material encapsulation and thermal energy storage[J]. Energy, 2021, 216: 119294. |
| [28] | 何大方, 吴健, 刘战剑, 等. 面向应用的石墨烯制备研究进展[J]. 化工学报, 2015, 66(8): 2888-2894. |
| He D F, Wu J, Liu Z J, et al. Recent advances in preparation of graphene for applications[J]. CIESC Journal, 2015, 66(8): 2888-2894. | |
| [29] | Ang Z R, Kong I, Lee R S Y, et al. Preparation of 3D graphene-carbon nanotube-magnetic hybrid aerogels for dye adsorption[J]. New Carbon Materials, 2022, 37(2): 424-432. |
| [30] | Chen W J, Zhang B B, Wang S, et al. Effect of GO on the structure and properties of PEG/biochar phase change composites[J]. Polymers 2023, 15(4), 963. |
| [31] | 孙增宝, 柳馨, 铁生年. KGM/CNC碳气凝胶定型共晶盐芒硝复合相变材料的制备及热性能研究[J]. 硅酸盐通报, 2024, 43(8): 3071-3078. |
| Sun Z B, Liu X, Tie S N. Preparation and thermal properties of KGM/CNC carbon aerogel shaped eutectic salt mirabilite composite phase change material[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(8): 3071-3078. | |
| [32] | 禹兴海, 唐海慰, 李艳安, 等. 一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能[J]. 化工进展, 2022, 41(11): 5936-5945. |
| Yu X H, Tang H W, Li Y A, et al. Electro-and photo-driven phase change composites based on stearic acid-infiltrated biochar[J]. Chemical Industry and Engineering Progress, 2022, 41(11): 593,,6-5945. | |
| [33] | 禹兴海, 李艳安, 唐海慰, 等. 生物炭/二十烷复合定型相变材料制备及其光热、电热转换和储存性能[J]. 复合材料学报, 2023, 40(1): 310-322. |
| Yu X H, Li Y A, Tang H W, et al. Form-stabilized phase change composites based on biochar and n-Eicosane for photo-and electro-thermal conversion and heat storage[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 310-322. | |
| [34] | Eziz A, Wang Y, Abulizi A, et al. Coal-based porous carbon supported Cu-Ni alloy for photocatalytic reduction of CO2 [J]. Journal of Alloys and Compounds, 2025, 1010: 177534. |
| [35] | Gupta K, Yuan B L, Chen C, et al. K2xMnxSn3- x S6 (x = 0.5–0.95) (KMS-1) immobilized on the reduced graphene oxide as KMS-1/r-GO aerogel to effectively remove Cs+ and Sr2+ from aqueous solution[J]. Chemical Engineering Journal, 2019, 369: 803-812. |
| [36] | 谢成西, 刘太奇, 赵荣, 等. 聚乙二醇/石墨烯复合相变电热膜的制备与性能[J]. 高分子材料科学与工程, 2024, 40(6): 47-55. |
| Xie C X, Liu T Q, Zhao R, et al. Preparation and performance of polyethylene glycol/graphene composite phase change electric heating film[J]. Polymer Materials Science & Engineering, 2024, 40(6): 47-55. | |
| [37] | 吴娟霞, 谢黎明. 二维材料的拉曼光谱研究进展[J]. 科学通报, 2018, 63(35): 3727-3746. |
| Wu J X, Xie L M. Progress on Raman spectroscopy of two-dimensional materials[J]. Chinese Science Bulletin, 2018, 63(35): 3727-3746. | |
| [38] | Luo H Y, Wang Y J, Wen X Q, et al. Key roles of the crystal structures of MgO-biochar nanocomposites for enhancing phosphate adsorption [J]. Science of The Total Environment, 2021, 766: 142618. |
| [39] | Li C E, Xu H, Guo C Z, et al. Thermal performance mechanisms of n-octadecane composite phase change materials (PCM) enhanced by hydrophilic and hydrophobic silica-based aerogels[J]. Journal of Building Engineering, 2025,115: 114533. |
| [40] | Hou M T, Jiang Z Y, Sun W, et al. Efficient photothermal anti/deicing enabled by 3D Cu2-xS encapsulated phase change materials mixed superhydrophobic coatings[J]. Advanced Materials, 2024, 36(3): 2310312. |
| [41] | Liang Q W, Zhang H J, Li Y L, et al. Multifunctional response of biomass carbon/sodium sulfate decahydrate composite phase change materials[J]. Journal of Energy Storage, 2024, 83: 110621. |
| [42] | Feng R Y, Zhu W J, Yang W, et al. Scalable production of flexible and multifunctional graphene-based polymer composite film for high-performance electromagnetic interference shielding[J]. Carbon, 2025, 233: 119875. |
| [43] | Shi T, Zheng Z H, Liu H, et al. Flexible and foldable composite films based on polyimide/phosphorene hybrid aerogel and phase change material for infrared stealth and thermal camouflage[J]. Composites Science and Technology, 2022, 217, 109127. |
| [1] | 吴雷, 胡紫璇, 高渊, 刘长波, 曹虎生, 刘田田, 朱瑞玉, 周军. 微波联合生物炭活化过硫酸盐氧化修复多环芳烃污染土壤研究[J]. 化工学报, 2025, 76(7): 3659-3670. |
| [2] | 孙传付, 胡桂林, 曹俊杰, 左启斌, 陈媚, 夏玉珍. 梯度孔分布ZnO-GA锂离子电池负极材料研究[J]. 化工学报, 2025, 76(7): 3710-3718. |
| [3] | 王金月, 谢恩泽, 马翰泽, 袁晟, 何光伟, 姜忠义. 单原子层分离膜:进展与展望[J]. 化工学报, 2025, 76(5): 1943-1959. |
| [4] | 蔡天姿, 张海丰, 林海丹, 张子龙, 周鹏宇, 王柏林, 李小年. 硼掺杂氮基石墨烯检测变压器油中溶解气体CO和CO2的密度泛函理论研究[J]. 化工学报, 2025, 76(4): 1841-1851. |
| [5] | 徐子易, 席阳, 宋泽文, 周海骏. 碳纳米材料在锌离子电池中的应用研究进展[J]. 化工学报, 2025, 76(1): 40-52. |
| [6] | 马林峰, 欧爱彤, 李志远, 李垚, 刘润泽, 吴晓乐, 徐景涛. Na2S改性生物炭高效吸附重金属离子:制备及吸附机理[J]. 化工学报, 2024, 75(7): 2594-2603. |
| [7] | 赵璐璐, 唐二军, 邢旭腾, 刘少杰, 褚晓萌, 呼娜, 张泽. POSS改性氧化石墨烯对涂层防腐和疏水性能的影响[J]. 化工学报, 2024, 75(5): 1977-1986. |
| [8] | 朱子厚, 潘丰, 赵鹏飞, 贺缨. 加热表面材质对核态沸腾换热影响的流-热耦合数值研究[J]. 化工学报, 2024, 75(10): 3437-3451. |
| [9] | 李文宁, 陆敏, 殷俞. 钴高度分散于还原氧化石墨烯用于高级氧化降解有机污染物[J]. 化工学报, 2024, 75(10): 3793-3803. |
| [10] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
| [11] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
| [12] | 顾浩, 张福建, 刘珍, 周文轩, 张鹏, 张忠强. 力电耦合作用下多孔石墨烯膜时间维度的脱盐性能及机理研究[J]. 化工学报, 2023, 74(5): 2067-2074. |
| [13] | 姜家豪, 黄笑乐, 任纪云, 朱正荣, 邓磊, 车得福. 生物炭吸附溶液中Pb2+的定性及定量研究[J]. 化工学报, 2023, 74(2): 830-842. |
| [14] | 陈佩佩, 汪秋英, 肖泽卿, 周思佳, 张小亮. 石墨烯量子点复合膜的调控制备:前体的影响[J]. 化工学报, 2023, 74(12): 5006-5015. |
| [15] | 余后川, 任腾, 张宁, 姜晓滨, 代岩, 张晓鹏, 鲍军江, 贺高红. 二维氧化石墨烯膜离子选择性传递调控的研究进展[J]. 化工学报, 2023, 74(1): 303-312. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号