CIESC Journal ›› 2019, Vol. 70 ›› Issue (S2): 265-274.DOI: 10.11949/0438-1157.20190257
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Jiajie BAI1(),Litong LIANG2,Zhonglin ZHANG1(),Peng LI2,3(),Jingxuan YANG1,Xiaogang HAO1,Wei HUANG2,Guoqing GUAN4
Received:
2019-03-19
Revised:
2019-04-10
Online:
2019-09-06
Published:
2019-09-06
Contact:
Zhonglin ZHANG,Peng LI
白佳杰1(),梁丽彤2,张忠林1(),李鹏2,3(),杨景轩1,郝晓刚1,黄伟2,官国清4
通讯作者:
张忠林,李鹏
作者简介:
白佳杰(1994—),女,硕士研究生,基金资助:
CLC Number:
Jiajie BAI, Litong LIANG, Zhonglin ZHANG, Peng LI, Jingxuan YANG, Xiaogang HAO, Wei HUANG, Guoqing GUAN. Simulation and analysis of catalytic depolymerization of low-rank coal by chemical percolation devolatilization model[J]. CIESC Journal, 2019, 70(S2): 265-274.
白佳杰, 梁丽彤, 张忠林, 李鹏, 杨景轩, 郝晓刚, 黄伟, 官国清. 基于CPD模型的低阶煤催化解聚过程模拟分析[J]. 化工学报, 2019, 70(S2): 265-274.
Add to citation manager EndNote|Ris|BibTeX
参数 | 数值 | 描述 |
---|---|---|
Eb | 232.086 kJ·mol-1 | 桥键断裂活化能 |
Ab | 2.06×1015 s-1 | 桥键断裂频率因子 |
βb | 7.5 kJ·mol-1 | 桥键断裂活化能的标准偏差 |
Eg | 289 kJ·mol-1 | 气体形成活化能 |
Ag | 3×1015 s-1 | 气体释放频率因子 |
βg | 33.9 kJ·mol-1 | 气体释放活化能的标准偏差 |
ρ | 0.9 | 复合速率常数(kδ/kc) |
Ecr | 272 kJ·mol-1 | 交联反应活化能 |
Acr | 3×1015 s-1 | 交联反应频率因子 |
Table 1 Kinetics parameters of CPD model
参数 | 数值 | 描述 |
---|---|---|
Eb | 232.086 kJ·mol-1 | 桥键断裂活化能 |
Ab | 2.06×1015 s-1 | 桥键断裂频率因子 |
βb | 7.5 kJ·mol-1 | 桥键断裂活化能的标准偏差 |
Eg | 289 kJ·mol-1 | 气体形成活化能 |
Ag | 3×1015 s-1 | 气体释放频率因子 |
βg | 33.9 kJ·mol-1 | 气体释放活化能的标准偏差 |
ρ | 0.9 | 复合速率常数(kδ/kc) |
Ecr | 272 kJ·mol-1 | 交联反应活化能 |
Acr | 3×1015 s-1 | 交联反应频率因子 |
工业分析/%① | 元素分析/%② | ||||||
---|---|---|---|---|---|---|---|
A | V | M | FC③ | C | H | N | O |
8.26 | 34.31 | 3.06 | 54.37 | 81.44 | 4.84 | 1.10 | 10.33 |
Table 2 Proximate and ultimate analysis of coal sample
工业分析/%① | 元素分析/%② | ||||||
---|---|---|---|---|---|---|---|
A | V | M | FC③ | C | H | N | O |
8.26 | 34.31 | 3.06 | 54.37 | 81.44 | 4.84 | 1.10 | 10.33 |
温度/K | 陕西原煤热解产率/%(质量分数) | 加FeCl3催化解聚产率/%(质量分数) | 加ZnCl2催化解聚产率/%(质量分数) | ||||||
---|---|---|---|---|---|---|---|---|---|
焦油 | 气体 | 半焦 | 焦油 | 气体 | 半焦 | 焦油 | 气体 | 半焦 | |
298 | 0 | 0 | 100(煤) | 0 | 0 | 100(煤) | 0 | 0 | 100(煤) |
573 | 0.194 | 0.970 | 98.836 | 0.166 | 1.099 | 98.735 | 0.164 | 0.729 | 99.107 |
673 | 1.029 | 3.987 | 94.984 | 1.263 | 4.033 | 94.704 | 1.752 | 2.586 | 95.662 |
773 | 6.485 | 11.227 | 82.288 | 7.122 | 11.550 | 81.328 | 8.805 | 9.616 | 81.579 |
873 | 7.206 | 20.188 | 72.606 | 8.230 | 21.800 | 69.970 | 9.810 | 19.076 | 71.114 |
Table 3 Experimental results of pyrolysis of raw coal with or without catalyst
温度/K | 陕西原煤热解产率/%(质量分数) | 加FeCl3催化解聚产率/%(质量分数) | 加ZnCl2催化解聚产率/%(质量分数) | ||||||
---|---|---|---|---|---|---|---|---|---|
焦油 | 气体 | 半焦 | 焦油 | 气体 | 半焦 | 焦油 | 气体 | 半焦 | |
298 | 0 | 0 | 100(煤) | 0 | 0 | 100(煤) | 0 | 0 | 100(煤) |
573 | 0.194 | 0.970 | 98.836 | 0.166 | 1.099 | 98.735 | 0.164 | 0.729 | 99.107 |
673 | 1.029 | 3.987 | 94.984 | 1.263 | 4.033 | 94.704 | 1.752 | 2.586 | 95.662 |
773 | 6.485 | 11.227 | 82.288 | 7.122 | 11.550 | 81.328 | 8.805 | 9.616 | 81.579 |
873 | 7.206 | 20.188 | 72.606 | 8.230 | 21.800 | 69.970 | 9.810 | 19.076 | 71.114 |
陕西煤 | p0 | c0 | Mclust | Mδ | σ+1 |
---|---|---|---|---|---|
校正前 | 0.59 | 0 | 317 | 30.8 | 5.17 |
校正后 | 0.59 | 0.21 | 317 | 29 | 5.17 |
Table 4 Chemical structure parameters of coal
陕西煤 | p0 | c0 | Mclust | Mδ | σ+1 |
---|---|---|---|---|---|
校正前 | 0.59 | 0 | 317 | 30.8 | 5.17 |
校正后 | 0.59 | 0.21 | 317 | 29 | 5.17 |
动力学参数 | SXYM | SX+FeCl3 | SX+ZnCl2 |
---|---|---|---|
Eb/(kJ·mol-1) | 232.086 | 232.086 | 232.086 |
Ab/s-1 | 2.06×1015 | 2.06×1015 | 2.06×1015 |
βb/(kJ·mol-1) | 7.5 | 7.5 | 7.5 |
Eg/(kJ·mol-1) | 289 | 280 | 289 |
Ag/s-1 | 3×1015 | 3×1015 | 3×1015 |
βg/(kJ·mol-1) | 33.9 | 25.1 | 29.3 |
ρ | 0.9 | 1.1 | 1.2 |
Ecr/(kJ·mol-1) | 272 | 272 | 301.3 |
Acr/s-1 | 3×1015 | 3×1015 | 2.5×1015 |
Table 5 Kinetic parameters in catalytic depolymerization
动力学参数 | SXYM | SX+FeCl3 | SX+ZnCl2 |
---|---|---|---|
Eb/(kJ·mol-1) | 232.086 | 232.086 | 232.086 |
Ab/s-1 | 2.06×1015 | 2.06×1015 | 2.06×1015 |
βb/(kJ·mol-1) | 7.5 | 7.5 | 7.5 |
Eg/(kJ·mol-1) | 289 | 280 | 289 |
Ag/s-1 | 3×1015 | 3×1015 | 3×1015 |
βg/(kJ·mol-1) | 33.9 | 25.1 | 29.3 |
ρ | 0.9 | 1.1 | 1.2 |
Ecr/(kJ·mol-1) | 272 | 272 | 301.3 |
Acr/s-1 | 3×1015 | 3×1015 | 2.5×1015 |
1 | ZhaoH Y, SongQ, LiuS C, et al. Study on catalytic co-pyrolysis of physical mixture/staged pyrolysis characteristics of lignite and straw over an catalytic beds of char and its mechanism[J]. Energy Conversion and Management, 2018, 161: 13-26. |
2 | GuanG Q, FushimiC, TsutsumiA. Prediction of flow behavior of the riser in a novel high solids flux circulating fluidized bed for steam gasification of coal or biomass[J]. Chemical Engineering Journal, 2010, 164(1): 221-229. |
3 | WangM Y, JinL J, LiY, et al. In situ catalytic upgrading of coal pyrolysis tar over carbon-based catalysts coupled with CO2 reforming of methane[J]. Energy & Fuels, 2018, 31(9): 119-128. |
4 | HanJ Z, WangX D, YueJ R, et al. Catalytic upgrading of coal pyrolysis tar over char-based catalysts[J]. Fuel Processing Technology, 2014, 122: 98-106. |
5 | ZhengH, WangW, XuR S, et al. Effect of the particle size of iron ore on the pyrolysis kinetic behaviour of coal-iron ore briquettes[J]. Energies, 2018, 11(10): 2595-2611. |
6 | ShangguanJ, ZhaoY S, FanH L, et al. Desulfurization behavior of zinc oxide based sorbent modified by the combination of Al2O3 and K2CO3[J]. Fuel, 2013, 108(11): 80-84. |
7 | DingL, ZhouZ J, GuoQ H, et al. Catalytic effects of Na2CO3 additive on coal pyrolysis and gasification[J]. Fuel, 2015, 142: 134-144. |
8 | ChengX H, HeX M, ChenC, et al. Influence of Fe2O3/CaO catalysts on the pyrolysis products of low-rank coal[J]. Energy Technology, 2015, 3(10): 1068-1071. |
9 | FuY, GuoY H, ZhangK X. Effect of three different catalysts (KCl, CaO, and Fe2O3) on the reactivity and mechanism of low-rank coal pyrolysis[J]. Energy & Fuels, 2016, 30(3): 2428-2433. |
10 | ZhuT Y, ZhangS Y, HuangJ J, et al. Effect of calcium oxide on pyrolysis of coal in a fluidized bed[J]. Fuel Processing Technology, 2000, 64(1): 271-284. |
11 | ZhangX, LiangL T, ZhangQ, et al. A study on catalytic depolymerization of a typical perhydrous coal for improving tar yield[J]. Journal of Analytical and Applied Pyrolysis, 2019, 138(1): 242-248. |
12 | LiangL T, HuangW, GaoF X, et al. Mild catalytic depolymerization of low rank coals: a novel way to increase tar yield[J]. RSC Advances, 2015, 5(4): 2493-2503. |
13 | LiangL T, HuaiJ T, ZhangQ, et al. Catalytic depolymerization of a typical lignite for improving tar yield by Co and Zn catalyst[J]. Scientific Reports, 2017, 7(1): 14433-14441. |
14 | MaffeiT, FrassoldatiA, CuociA, et al. Predictive one step kinetic model of coal pyrolysis for CFD applications[J]. Proceedings of the Combustion Institute, 2013, 34(2): 2401-2410. |
15 | KobayashiH. Coal devolatilization at high temperatures[J]. Symposium on Combustion, 1977, 16(1): 411-425. |
16 | SommarivaS, MaffeiT, MigliavaccaG, et al. A predictive multi-step kinetic model of coal devolatilization[J]. Fuel, 2010, 89(2): 318-328. |
17 | WangJ L, LiP, LiangL T, et al. Kinetics modeling of low-rank coal pyrolysis based on a three gaussian-DAEM -reaction model[J]. Energy & Fuels, 2016, 30(11): 9693-9702. |
18 | SolomonP R, HamblenD G, CarangeloR M, et al. General model of coal devolatilization[J]. Energy & Fuels, 1988, 2(4): 405-422. |
19 | NiksaS, KersteinA R. Flashchain theory for rapid coal devolatilization kinetics(1): Formulation[J]. Energy & Fuels, 1991, 5(5): 647-665. |
20 | NiksaS. Flashchain theory for rapid coal devolatilization kinetics(7): Predicting the release of oxygen species from various coals[J]. Veterinary Clinics of North America Small Animal Practice, 1996, 41(4): 703-707. |
21 | GrantD M, PugmireR J, FletcherT H, et al. Chemical model of coal devolatilization using percolation lattice statistics[J]. Energy & Fuels, 1989, 3(2): 175-186. |
22 | FletcherT H, KersteinA R, PugmireR J, et al. A chemical percolation model for devolatilization: temperature and heating rate effects[J]. Am. Chem. Soc., Div. Fuel Chem. Prepr. Pap., 1989, 34(4): 1272-1279. |
23 | FletcherT H, KersteinA R, PugmireR J, et al. Chemical percolation model for devolatilization(2): Temperature and heating rate effects on product yields[J]. Energy & Fuels, 1990, 4(1): 54-60. |
24 | FletcherT H, KersteinA R, PugmireR J, et al. Chemical percolation model for devolatilization(3): Direct use of carbon-13 NMR data to predict effects of coal type [J]. Energy & Fuels, 1992, 6(4): 414-431. |
25 | SolumM S, PugmireR J, GrantD M. Carbon-13 solid-state NMR of argonne-premium coals[J]. Energy & Fuels, 1989, 3(2): 187-193. |
26 | FletcherT H. Time-resolved particle temperature and mass loss measurements of a bituminous coal during devolatilization[J]. Combustion and Flame, 1989, 78(2): 223-236. |
27 | SolomonP R, SerioM A, SuubergE M. Coal pyrolysis: experiments, kinetic rates and mechanisms[J]. Progress in Energy and Combustion Science, 1992, 18(2): 133-220. |
28 | GenettiD, FletcherT H, PugmireR J. Development and application of a correlation of 13C NMR chemical structural analyses of coal based on elemental composition and volatile matter content [J]. Energy & Fuels, 1999, 13(1): 60-68. |
29 | FletcherT H, PondH R, WebsterJ, et al. Prediction of tar and light gas during pyrolysis of black liquor and biomass[J]. Energy & Fuels, 2012, 26(6): 3381-3387. |
30 | LewisA D, FletcherT H. Prediction of sawdust pyrolysis yields from a flat-flame burner using the CPD model[J]. Energy & Fuels, 2013, 27(2): 942-953. |
31 | TanV, DeG A, HosseiniT, et al. Scrap tyre pyrolysis: modified chemical percolation devolatilization (M-CPD) to describe the influence of pyrolysis conditions on product yields[J]. Waste Management, 2018, 76(3): 516-527. |
32 | ChengY, LiT Y, AnH, et al. Modeling pyrolysis of asphalt using chemical percolation devolatilization theory[J]. Fuel, 2017, 206: 364-370. |
33 | LiuG R, SongH J, WuJ H. Prediction of low-rank coal pyrolysis behavior by chemical percolation devolatilization model[J]. Environmental Progress & Sustainable Energy, 2016, 35(4): 1215-1220. |
34 | YanB H, ChengY, XuP C, et al. Generalized model of heat transfer and volatiles evolution inside particles for coal devolatilization[J]. AIChE Journal, 2014, 60(8): 2893-2906. |
35 | FletcherT H. Compilation of Sandia Coal Devolatilization Data: Milestone Report[M]. Hardesty D R. available NTIS: DOE’S Pittsburgh Energy Technology Center, 1992: 0709. |
36 | 梁丽彤. 低阶煤催化解聚研究[D]. 太原: 太原理工大学, 2016. |
LiangL T. Study on catalytic depolymerization of low rank coal [D]. Taiyuan: Taiyuan University of Technology, 2016. |
[1] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[2] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[3] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[4] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[5] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[6] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[7] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[8] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[9] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[10] | Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review [J]. CIESC Journal, 2023, 74(7): 2735-2752. |
[11] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[12] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[13] | Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance [J]. CIESC Journal, 2023, 74(7): 2908-2918. |
[14] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[15] | Chen WANG, Xiufeng SHI, Xianfeng WU, Fangjia WEI, Haohong ZHANG, Yin CHE, Xu WU. Preparation of Mn3O4 catalyst by redox method and study on its catalytic oxidation performance and mechanism of toluene [J]. CIESC Journal, 2023, 74(6): 2447-2457. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||