1 |
Lund H , Mathiesen B V . Energy system analysis of 100% renewable energy systems—the case of Denmark in years 2030 and 2050 [J]. Energy, 2009, 34(5): 524-531.
|
2 |
Kalnæs S E , Jelle B P . Phase change materials and products for building applications: a state-of-the-art review and future research opportunities [J]. Energy and Buildings, 2015, 94: 150-176.
|
3 |
Lin Y , Alva G , Fang G . Review on thermal performances and applications of thermal energy storage systems with inorganic phase change materials [J]. Energy, 2018, 165: 685-708.
|
4 |
Thirugnanasambandam M , Iniyan S , Goic R . A review of solar thermal technologies [J]. Renewable and Sustainable Energy Reviews, 2010, 14(1): 312-322.
|
5 |
Wang J , O’Donnell J , Brandt A R . Potential solar energy use in the global petroleum sector [J]. Energy, 2017, 118: 884-892.
|
6 |
Li G , Shittu S , Diallo T M O , et al . A review of solar photovoltaic-thermoelectric hybrid system for electricity generation [J]. Energy, 2018, 158: 41-58.
|
7 |
Gorji T B , Ranjbar A A . Thermal and exergy optimization of a nanofluid-based direct absorption solar collector [J]. Renewable Energy, 2017, 106: 274-287.
|
8 |
Qin C , Kang K , Lee I , et al . Optimization of a direct absorption solar collector with blended plasmonic nanofluids [J]. Solar Energy, 2017, 150: 512-520.
|
9 |
Leong K Y , Ong H C , Amer N H , et al . An overview on current application of nanofluids in solar thermal collector and its challenges [J]. Renewable and Sustainable Energy Reviews, 2016, 53: 1092-1105.
|
10 |
Loni R , Asli-Ardeh E A , Ghobadian B , et al . Energy and exergy investigation of alumina/oil and silica/oil nanofluids in hemispherical cavity receiver: experimental study [J]. Energy, 2018, 164: 275-287.
|
11 |
Gorji T B , Ranjbar A A . A review on optical properties and application of nanofluids in direct absorption solar collectors (DASCs) [J]. Renewable and Sustainable Energy Reviews, 2017, 72: 10-32.
|
12 |
Minardi J E , Chuang H N . Performance of a “black” liquid flat-plate solar collector [J]. Solar Energy, 1975, 17(3): 179-183.
|
13 |
Liu X , Xuan Y . Full-spectrum volumetric solar thermal conversion via photonic nanofluids [J]. Nanoscale, 2017, 9(39): 14854-14860.
|
14 |
Green M A , Pillai S . Harnessing plasmonics for solar cells [J]. Nature Photonics, 2012, 6: 130-132.
|
15 |
Ma X C , Dai Y , Yu L , et al . Energy transfer in plasmonic photocatalytic composites [J]. Light: Science & Applications, 2016, 5: e16017.
|
16 |
Yang X , Yu H , Guo X , et al . Plasmon-exciton coupling of monolayer MoS2-Ag nanoparticles hybrids for surface catalytic reaction [J]. Materials Today Energy, 2017, 5: 72-78.
|
17 |
An W , Wu J , Zhu T , et al . Experimental investigation of a concentrating PV/T collector with Cu9S5 nanofluid spectral splitting filter [J]. Applied Energy, 2016, 184: 197-206.
|
18 |
Hu J T , Odom T W , Lieber C M . Chemistry and physics in one dimension: synthesis and properties of nanowires and nano-tubes [J]. Accounts of Chemical Research, 1999, 32(5): 435-445.
|
19 |
Pan Z W , Dai Z R , Wang Z L . Nanobelts of semiconducting oxides [J].Science, 2001, 291: 1947-1949.
|
20 |
雷琴 . 利用DDA方法研究金属银及其核壳结构纳米粒子的光学性质[D]. 天津: 南开大学, 2014.
|
|
Lei Q . Study on optical properties of metallic silver and its core-shell structure nanoparticles by DDA method [D]. Tianjin: Nankai University, 2014.
|
21 |
Xuan Y M , Duan H L , Li Q . Enhancement of solar energy absorption using a plasmonic nanofluid based on TiO2/Ag composite nanoparticles [J]. RSC Advances, 2014, 4(31): 16206-16213.
|
22 |
Lv W , Phelan P E , Swaminathan R , et al . Multifunctional core-shell nanoparticle suspensions for efficient absorption [J]. Journal of Solar Energy Engineering, 2013, 135(2): 021004.
|
23 |
Wu Y , Zhou L , Du X , et al . Optical and thermal radiative properties of plasmonic nanofluids containing core–shell composite nanoparticles for efficient photothermal conversion [J]. International Journal of Heat and Mass Transfer, 2015, 82: 545-554.
|
24 |
Lai X . Recent advances in micro-/nano-structured hollow spheres for energy applications: from simple to complex systems [J]. Energy & Environmental Science, 2012, 5(2): 5604-5618.
|
25 |
Dong Z , Lai X , Halpert J E , et al . Accurate control of multishelled ZnO hollow microspheres for dye-sensitized solar cells with high efficiency [J]. Advanced Materials, 2012, 24(8): 1046-1049.
|
26 |
Lou X . Hollow micro/nanostructures: synthesis and applications [J]. Materials, 2008, 20(21): 3987-4019.
|
27 |
Grald E W , Kuehn T H . Performance analysis of a parabolic trough solar collector with a porous absorber receiver [J]. Solar Energy, 1989, 42(4): 281-292.
|
28 |
de Gennes P G . Soft matter [J]. Reviews of Modern Physics, 1992, 64(3): 645-648.
|
29 |
Du M , Tang G H . Plasmonic nanofluids based on gold nanorods/nanoellipsoids/nanosheets for solar energy harvesting [J]. Solar Energy, 2016, 137: 393-400.
|
30 |
Rakić A D , Djurišić A B , Elazar J M , et al . Optical properties of metallic films for vertical-cavity optoelectronic devices [J]. Applied Optics, 1998, 37(22): 5271-5283.
|