CIESC Journal ›› 2020, Vol. 71 ›› Issue (1): 148-165.DOI: 10.11949/0438-1157.20191233
• Reviews and monographs • Previous Articles Next Articles
Mengdi ZHOU1(),Jiawei SHEN1(),Lijun LIANG2,Jiachen LI3,Lehong JIN1(),Qi WANG3
Received:
2019-10-23
Revised:
2019-10-30
Online:
2020-01-05
Published:
2020-01-05
Contact:
Jiawei SHEN,Lehong JIN
周梦迪1(),沈嘉炜1(),梁立军2,李嘉辰3,金乐红1(),王琦3
通讯作者:
沈嘉炜,金乐红
作者简介:
周梦迪(1994—),女,硕士研究生,基金资助:
CLC Number:
Mengdi ZHOU, Jiawei SHEN, Lijun LIANG, Jiachen LI, Lehong JIN, Qi WANG. Advances in computer simulation of graphene biotoxicity[J]. CIESC Journal, 2020, 71(1): 148-165.
周梦迪, 沈嘉炜, 梁立军, 李嘉辰, 金乐红, 王琦. 石墨烯生物毒性的计算机模拟研究进展[J]. 化工学报, 2020, 71(1): 148-165.
Add to citation manager EndNote|Ris|BibTeX
1 | Li B L, Chen Y W, Liu J, et al. Direct optical imaging of graphene in vitro by nonlinear femtosecond laser spectral reshaping[J]. Nano Letters, 2012, 12(11): 5936-5940. |
2 | Zhu C F, Zeng Z Y, Li H, et al. Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules[J]. Journal of the American Chemical Society, 2013, 135(16): 5998-6001. |
3 | Wang L, Wang Y, Wong J I, et al. Functionalized MoS2 nanosheet-based field-effect biosensor for label-free sensitive detection of cancer marker proteins in solution[J]. Small, 2014, 10(6): 1101-1105. |
4 | Shao Y Y, Wang J, Hong W, et al. Graphene based electrochemical sensors and biosensors: a review[J]. Electroanalysis, 2010, 22(10): 1027-1036. |
5 | Farokhzad O C, Langer R. Impact of nanotechnology on drug delivery[J]. ACS Nano, 2009, 3(1): 16-20. |
6 | Bao H Q, Pan Y Z, Ping Y, et al. Chitosan-functionalized graphene oxide as a nanocarrier for drug and gene delivery[J]. Small, 2011, 7(11): 1569-1578. |
7 | Li M, Yang X, Ren J, et al. Using graphene oxide high near-infrared absorbance for photothermal treatment of Alzheimer s disease[J]. Advanced Materials, 2012, 24(13): 1722-1728. |
8 | Yang K, Wan J M, Zhang S, et al. The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power[J]. Biomaterials, 2012, 33(7): 2206-2214. |
9 | Yang Z X, Kang S G, Zhou R H. Nanomedicine: de novo design of nanodrugs[J]. Nanoscale, 2014, 6(2): 663-677. |
10 | Mahmoudi M, Azadmanesh K, Shokrgozar M A, et al. Effect of nanoparticles on the cell life cycle[J]. Chemical Reviews, 2011, 111(5): 3407-3432. |
11 | Singh N, Manshian B, Gareth J S, et al. NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials[J]. Biomaterials, 2009, 30(23): 3891-3914. |
12 | Gopalakrishnan R, Subramanian V. Interaction of collagen with carbon nanotube: a molecular dynamics investigation[J]. Journal of Biomedical Nanotechnology, 2011, 7(1): 186-187. |
13 | Makarucha A J, Todorova N, Yarovsky I. Nanomaterials in biological environment: a review of computer modelling studies[J]. European Biophysics Journal, 2011, 40(2): 103-115. |
14 | De Volder M F, Tawfick S H, Baughman R H, et al. Carbon nanotubes: present and future commercial applications[J]. Science, 2013, 339(6119): 535-539. |
15 | Novoselov K S, Fal'ko V I, Colombo L, et al. A roadmap for graphene[J]. Nature, 2012, 490(7419): 192-200. |
16 | Chang Y L, Yang S T, Liu J H, et al. In vitro toxicity evaluation of graphene oxide on A549 cells[J]. Toxicology Letters, 2011, 200(3): 201-210. |
17 | Hu W B, Peng C, Lv M, et al. Protein corona-mediated mitigation of cytotoxicity of graphene oxide[J]. ACS Nano, 2011, 5(5): 3693-3700. |
18 | Zhang X Y, Hu W B, Li J, et al. A comparative study of cellular uptake and cytotoxicity of multi-walled carbon nanotubes, graphene oxide, and nanodiamond[J]. Toxicology Research, 2012, 1(1): 62-68. |
19 | Novoselov K S, Geim A K, Morozov S V. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5096): 666-669. |
20 | Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless dirac fermions in graphene[J]. Nature, 2005, 438(7065): 197-200. |
21 | Zhang Y, Tan Y W, Stormer H L, et al. Experimental observation of the quantum hall effect and Berry s phase in graphene[J]. Nature, 2005, 438(7065): 201-204. |
22 | 李婷, 张超志, 沈丹, 等. 石墨烯和氧化石墨烯的生物体毒性研究进展[J]. 南京大学学报, 2016, 52(2): 235-243. |
Li T, Zhang C Z, Shen D, et al. Advances in studies on biotoxicity of graphene and graphene oxide[J]. Journal of Nanjing University, 2016, 52(2): 235-243. | |
23 | Feng L Z, Liu Z. Graphene in biomedicine: opportunities and challenges[J]. Nanomedicine, 2011, 6(22): 317-324. |
24 | Gu Z L, Zhao L, Li W F, et al. Orientational binding of DNA guided by the C2N template[J]. ACS Nano, 2017, 11(3): 3198-3206. |
25 | Tu Y S, Lv M, Xiu P, et al. Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets[J]. Nature Nanotechnology, 2013, 8(8): 594-601. |
26 | Zuo G H, Zhou X, Huang Q, et al. Adsorption of villin headpiece onto graphene, carbon nanotube, and C60: effect of contacting surface curvatures on binding affinity[J]. Journal of Physical Chemistry C, 2011, 115(47): 23323-23328. |
27 | 李以圭, 刘金晨. 分子模拟与化学工程[J]. 现代化工, 2001, 21(7): 10-13. |
Li Y K, Liu J C. Molecular simulation and chemical engineering[J]. Modern Chemical Industry, 2001, 21(7): 10-13. | |
28 | 欧阳芳平, 徐慧, 郭爱敏. 分子模拟方法及其在分子生物学中的应用[J]. 生物信息学, 2005, 3(1): 33-36. |
Ouyang F P, Xu H, Guo A M. Molecular simulation method and its application in molecular biology[J]. Chinese Journal of Bioinformatics, 2005, 3(1): 33-36. | |
29 | 唐赟, 李卫华, 盛亚运. 计算机分子模拟-2013年诺贝尔化学奖简介[J]. 自然杂志, 2013, 35(6): 408-415. |
Tang Y, Li W H, Sheng Y Y. Computer molecular simulation-introduction to 2013 Nobel prize in chemistry[J]. Chinese Journal of Nature, 2013, 35(6): 408-415. | |
30 | Qiao R, Roberts A P, Mount A S, et al. Translocation of C60 and its derivatives across a lipid bilayer[J]. Nano Letters, 2007, 7(3): 614-619. |
31 | Wong-Ekkabout J, Baoukina S, Tirampo W, et al. Computer simulation study of fullerene translocation through lipid membranes[J]. Nature Nanotechnology, 2008, 3(6): 363-368. |
32 | Wallace E J, Sansom M S P. Blocking of carbon nanotube based nanoinjectors by lipids: a simulation study[J]. Nano Letters, 2008, 8(9): 2751-2756. |
33 | Shi X, Annette V D B, Hurt R H, et al. Cell entry of one-dimensional nanomaterials occurs by tip recognition and rotation[J]. Nature Nanotechnology, 2011, 6(11): 714-719. |
34 | Yang K, Ma Y Q. Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer[J]. Nature Nanotechnology, 2010, 5(8): 579-583. |
35 | Zhang Y B, Ali S F, Dervishi E, et al. Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells[J]. ACS Nano, 2010, 4(6): 3181-3186. |
36 | Vacha R, Martinez-Veracoechea F J, Frenkel D. Receptor-mediated endocytosis of nanoparticles of various shapes[J]. Nano Letters, 2011, 11(12): 5391-5395. |
37 | Qu G B, Liu S J, Zhang S P, et al. Graphene oxide induces toll-like receptor 4 (TLR4)-dependent necrosis in macrophages[J]. ACS Nano, 2013, 7(7): 5732-5745. |
38 | Hu X G, Ouyang S H, Mu L, et al. Effects of graphene oxide and oxidized carbon nanotubes on the cellular division, microstructure, uptake, oxidative stress, and metabolic profiles[J]. Environmental Science & Technology, 2015, 49(18): 10825-10833. |
39 | Kloepfer J A, Mielke R E, Nadeau J L. Uptake of CdSe and CdSe/ZnS quantum dots into bacteria via purine-dependent mechanisms[J]. Applied & Environmental Microbiology, 2005, 71(5): 2548-2557. |
40 | Hu W B, Peng C, Luo W, et al. Graphene-based antibacterial paper[J]. ACS Nano, 2010, 4(7): 4317-4323. |
41 | Liu X T, Chen K L. Interactions of graphene oxide with model cell membranes: probing nanoparticle attachment and lipid bilayer disruption[J]. Langmuir, 2015, 31(44): 12076-12086. |
42 | Jaworski S, Hinzmann M, Sawosz E, et al. Interaction of different forms of graphene with chicken embryo red blood cells[J]. Environmental Science & Pollution Research, 2017, 24(27): 21671-21679. |
43 | Li Y F, Yuan H Y, von dem Bussche A, et al. Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites[J]. Proceedings of The National Academy of Sciences, 2013, 110(30): 12295-12300. |
44 | Singh S K, Singh M K, Kulkarni P P, et al. Amine-modified graphene: thrombo-protective safer alternative to graphene oxide for biomedical applications[J]. ACS Nano, 2012, 6(3): 2731-2740. |
45 | Wu L, Zeng L, Jia X. Revealing the nature of interaction between graphene oxide and lipid membrane by surface-enhanced infrared absorption spectroscopy[J]. Journal of the American Chemical Society, 2015, 137(52): 10052-10055. |
46 | Krishnamoorthy K, Veerapandian M, Zhang L H, et al. Antibacterial efficiency of graphene nanosheets against pathogenic bacteria via lipid peroxidation[J]. Journal of Physical Chemistry C, 2012, 116(32): 17280-17287. |
47 | Akhavan O, Ghaderi E. Toxicity of graphene and graphene oxide nanowalls against bacteria[J]. ACS Nano, 2010, 4(10): 5731-5736. |
48 | Liu S B, Zeng T H, Hofmann M, et al. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress[J]. ACS Nano, 2011, 5(9): 6971-6980. |
49 | Hu W B, Peng C, Luo W J, et al. Graphene-based antibacterial paper[J]. ACS Nano, 2010, 4(7): 4317-4323. |
50 | Duan G X, Zhang Y Z, Luan B Q, et al. Graphene-induced pore formation on cell membranes[J]. Scientific Reports, 2017, 7: 42767. |
51 | Ritter K A, Lyding J W. The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons[J]. Nature Materials, 2009, 8(3): 235-242. |
52 | Zhang Z Z, Chang K, Peeters F M. Tuning of energy levels and optical properties of graphene quantum dots[J]. Physical Review B, 2008, 77(23): 235411. |
53 | Wu C Y, Wang C, Han T, et al. Insight into the cellular internalization and cytotoxicity of graphene quantum dots[J]. Advanced Healthcare Materials, 2013, 2(12): 1613-1619. |
54 | Wang S J, Cole I, Li Q. The toxicity of graphene quantum dots[J]. RSC Advance, 2016, 6(92): 89867-89878. |
55 | Liang L J, Kong Z, Kang Z, et al. Theoretical evaluation on potential cytotoxicity of graphene quantum dots[J]. ACS Biomaterials Science and Engineering, 2016, 2(11): 1983-1991. |
56 | Wong-Ekkabut J, Baoukina S, Triampo W, et al. Computer simulation study of fullerene translocation through lipid membranes[J]. Nature Nanotechnology, 2008, 3(6): 363-368. |
57 | Matesanz M C, Vila M, Feito M J, et al. The effects of graphene oxide nanosheets localized on F-actin filaments on cell-cycle alterations[J]. Biomaterials, 2013, 34(5): 1562-1569. |
58 | Wang M H, Wang Q, Lu X, et al. Interaction behaviors of fibrinopeptide-A and graphene with different functional groups: a molecular dynamics simulation approach[J]. Journal of Physical Chemistry B, 2017, 121(33): 7907-7915. |
59 | Nourbakhsh A, Cantoro M, Vosch T, et al. Bandgap opening in oxygen plasma-treated graphene[J]. Nanotechnology, 2010, 21(43): 435203. |
60 | Garaj S, Hubbard W, Reina A, et al. Graphene as a subnanometre trans-electrode membrane[J]. Nature, 2010, 467(7312): 190-193. |
61 | Cabrera-Sanfelix P. Adsorption and reactivity of CO2 on defective graphene sheets[J]. Journal of Physical Chemistry A, 2009, 113(2): 493-498. |
62 | You Y, Deng J, Tan X, et al. On the mechanism of gas adsorption for pristine, defective and functionalized graphene[J]. Physical Chemistry Chemical Physics, 2017, 19(8): 6051-6056. |
63 | Li B Y, Bell D R, Gu Z L, et al. Protein WW domain denaturation on defective graphene reveals the significance of nanomaterial defects in nanotoxicity[J]. Carbon, 2019, 146: 257-264. |
64 | Luan B Q, Huynh T, Zhao L, et al. Potential toxicity of graphene to cell functions via disrupting protein-protein interactions[J]. ACS Nano, 2015, 9(1): 663-669. |
65 | Tian X, Yang Z X, Duan G X, et al. Graphene oxide nanosheets retard cellular migration via disruption of actin cytoskeleton[J]. Small, 2017, 13(3): 1602133. |
66 | Fang G, Luan B Q, Ge C C, et al. Understanding the graphene quantum dots-ubiquitin interaction by identifying the interaction sites[J]. Carbon, 2017, 121: 285-291. |
67 | Zhou M D, Shen Q Y, Shen J W, et al. Understanding the size of graphene quantum dots on protein adsorption[J]. Colloids and Surfaces B: Biointerfaces, 2019, 174: 575-581. |
68 | Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features[J]. Biopolymers, 1983, 22(12): 2577-2637. |
69 | Srivastava S, Verma A, Frankamp B L, et al. Controlled assembly of protein-nanoparticle composites through protein surface recognition[J]. Advanced Materials, 2005, 17(5): 617-621. |
70 | Lynch I, Dawson K A. Protein-nanoparticle interactions[J]. Nano Today, 2008, 3(1/2): 40-47. |
71 | Lynch I, Salvati A, Dawson K A. Protein-nanoparticle interactions: what does the cell see?[J]. Nature Nanotechnology, 2009, 4(9): 546-547. |
72 | Lu C H, Yang H H, Zhu C L, et al. A graphene platform for sensing biomolecules[J]. Angewandte Chemie, 2010, 48(26): 4785-4787. |
73 | He S, Song B, Li D, et al. A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis[J]. Advanced Functional Materials, 2010, 20(3): 453-459. |
74 | Sathe C, Zou X, Leburtopn J P, et al. Computational investigation of DNA detection using graphene nanopores[J]. ACS Nano, 2011, 5(11): 8842-8851. |
75 | Wells D B, Belkin M, Comer J, et al. Assessing graphene nanopores for sequencing DNA[J]. Nano Letters, 2012, 12(8): 4117-4123. |
76 | Shankla M, Aksimentiev A. Conformational transitions and stop-and-go nanopore transport of single-stranded DNA on charged graphene[J]. Nature Communications, 2014, 5: 5171. |
77 | Qiu H, Sarathy A, Leburton J P, et al. Intrinsic stepwise translocation of stretched ssDNA in graphene nanopores[J]. Nano Letters, 2015, 15(12): 8322-8330. |
78 | Roxbury D, Manohar S, Jagota A. Molecular simulation of DNA β-sheet and β-barrel structures on graphite and carbon nanotubes[J]. Journal of Physical Chemistry C, 2010, 114(31): 13267-13276. |
79 | Zhao X C. Self-assembly of DNA segments on graphene and carbon nanotube arrays in aqueous solution: a molecular simulation study[J]. Journal of Physical Chemistry C, 2011, 115(14): 6181-6189. |
80 | Zeng S, Chen L, Wang Y, et al. Exploration on the mechanism of DNA adsorption on graphene and graphene oxide via molecular simulations[J]. Journal of Physics D: Applied Physics, 2015, 48(27): 275402. |
[1] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[2] | Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf) [J]. CIESC Journal, 2023, 74(9): 3968-3978. |
[3] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[4] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[5] | Yuanzhe SHAO, Zhonggai ZHAO, Fei LIU. Quality-related non-stationary process fault detection method by common trends model [J]. CIESC Journal, 2023, 74(6): 2522-2537. |
[6] | Hao GU, Fujian ZHANG, Zhen LIU, Wenxuan ZHOU, Peng ZHANG, Zhongqiang ZHANG. Desalination performance and mechanism of porous graphene membrane in temporal dimension under mechanical-electrical coupling [J]. CIESC Journal, 2023, 74(5): 2067-2074. |
[7] | Shanghao LIU, Shengkun JIA, Yiqing LUO, Xigang YUAN. Optimization of ternary-distillation sequence based on gradient boosting decision tree [J]. CIESC Journal, 2023, 74(5): 2075-2087. |
[8] | Houchuan YU, Teng REN, Ning ZHANG, Xiaobin JIANG, Yan DAI, Xiaopeng ZHANG, Junjiang BAO, Gaohong HE. Advances in two-dimensional graphene oxide membrane for ion selective transport [J]. CIESC Journal, 2023, 74(1): 303-312. |
[9] | Nini YUAN, Tuo GUO, Hongcun BAI, Yurong HE, Yongning YUAN, Jingjing MA, Qingjie GUO. Reaction process of CH4 on the surface of Fe2O3/Al2O3 oxygen carrier in chemical looping combustion: ReaxFF-MD simulation [J]. CIESC Journal, 2022, 73(9): 4054-4061. |
[10] | Kai HUANG, Sijie WANG, Haiping SU, Cheng LIAN, Honglai LIU. First principle study on inhibition of lithium dendrites growth by regulating graphene layer spacings [J]. CIESC Journal, 2022, 73(8): 3501-3510. |
[11] | Shuang HAN, Nan ZHANG, Hui WANG, Xuan ZHANG, Jinluan YANG, Manlin ZHANG, Zhichao ZHANG. Preparation and application of chlortetracycline electrochemical sensor based on molecularly imprinting technique [J]. CIESC Journal, 2022, 73(8): 3758-3767. |
[12] | Hongchao LIU, Suhang CHEN, Xianli DUAN, Fan WU, Xiaofei XU, Xianyu SONG, Shuangliang ZHAO, Honglai LIU. Transport behavior of Janus graphene quantum dots in biomembrane: a molecular dynamics simulation [J]. CIESC Journal, 2022, 73(7): 2835-2843. |
[13] | Zhichao LI, Yu ZHENG, Runnan ZHANG, Zhongyi JIANG. Research progress of high flux and antifouling graphene oxide membranes [J]. CIESC Journal, 2022, 73(6): 2370-2380. |
[14] | Qiwang HOU, Zhaolun WEN, Zhonglin ZHANG, Yegang LIU, Jingxuan YANG, Dongliang CHEN, Xiaogang HAO, Guoqing GUAN. Design and evaluation of a coal-based polygeneration system with carbon cycle [J]. CIESC Journal, 2022, 73(5): 2073-2082. |
[15] | Weiwei LIU, Guomin CUI, Lu ZHANG, Yuan XIAO, Qiguo YANG, Guanhua ZHANG. Damping optimization method for heat exchange network synthesis [J]. CIESC Journal, 2022, 73(5): 2060-2072. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||