CIESC Journal ›› 2020, Vol. 71 ›› Issue (3): 936-944.DOI: 10.11949/0438-1157.20191234
• Reviews and monographs • Previous Articles Next Articles
Yanqi LIU1,2,Ludong HE1,2,Peichao LIAN1,2,Xinzhi CHEN1,2(),Yi MEI1,2
Received:
2019-10-23
Revised:
2019-12-18
Online:
2020-03-05
Published:
2020-03-05
Contact:
Xinzhi CHEN
刘艳奇1,2,何路东1,2,廉培超1,2,陈鑫智1,2(),梅毅1,2
通讯作者:
陈鑫智
基金资助:
CLC Number:
Yanqi LIU, Ludong HE, Peichao LIAN, Xinzhi CHEN, Yi MEI. Progress on stability enhancement of black phosphorene[J]. CIESC Journal, 2020, 71(3): 936-944.
刘艳奇, 何路东, 廉培超, 陈鑫智, 梅毅. 黑磷烯稳定性增强研究进展[J]. 化工学报, 2020, 71(3): 936-944.
Add to citation manager EndNote|Ris|BibTeX
1 | Yi Y, Yu X F, Zhou W, et al. Two-dimensional black phosphorus: synthesis, modification, properties, and applications[J]. Materials Science and Engineering: R: Reports, 2017, 120: 1-33. |
2 | Novoselov K S, Jiang D, Schedin F, et al. Two-dimensional atomic crystals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(30): 10451-10453. |
3 | Liao L, Lin Y C, Bao M Q, et al. High-speed graphene transistors with a self-aligned nanowire gate[J]. Nature, 2010, 467(7313): 305-308. |
4 | Schwierz F. Graphene transistors[J]. Nature Nanotechnology, 2010, 5(7): 487-496. |
5 | Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183-191. |
6 | Tan C L, Lai Z C, Zhang H. Ultrathin two-dimensional multinary layered metal chalcogenide nanomaterials[J]. Advanced Materials, 2017, 29(37): 25. |
7 | Li S, Liu X, Fan X, et al. New strategy for black phosphorus crystal growth through ternary clathrate[J]. Crystal Growth & Design, 2017, 17(12): 6579-6585. |
8 | Liu H, Neal A T, Zhu Z, et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility[J]. ACS Nano, 2014, 8(4): 4033-4041. |
9 | Li L K, Yu Y J, Ye G J, et al. Black phosphorus field-effect transistors[J]. Nature Nanotechnology, 2014, 9(5): 372-377. |
10 | Qiao J S, Kong X H, Hu Z X, et al. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus[J]. Nature Communications, 2014, 5: 7. |
11 | Tran V, Soklaski R, Liang Y F, et al. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus[J]. Physical Review B, 2014, 89(23): 6. |
12 | Li L, Chen L, Mukherjee S, et al. Phosphorene as a polysulfide immobilizer and catalyst in high-performance lithium-sulfur batteries[J]. Advanced Materials, 2017, 29(2): 8. |
13 | Sun J, Lee H W, Pasta M, et al. A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries[J]. Nature Nanotechnology, 2015, 10(11): 980-985. |
14 | Jiang Q Q, Xu L, Chen N, et al. Facile synthesis of black phosphorus: an efficient electrocatalyst for the oxygen evolving reaction[J]. Angewandte Chemie-International Edition, 2016, 55(44): 13849-13853. |
15 | Sun Z B, Xie H H, Tang S Y, et al. Ultrasmall black phosphorus quantum dots: synthesis and use as photothermal agents[J]. Angewandte Chemie-International Edition, 2015, 54(39): 11526-11530. |
16 | Wang M Q, Liang Y, Liu Y J, et al. Ultrasmall black phosphorus quantum dots: synthesis, characterization, and application in cancer treatment[J]. Analyst, 2018, 143(23): 5822-5833. |
17 | Ren X L, Mei Y, Lian P C, et al. A novel application of phosphorene as a flame retardant[J]. Polymers, 2018, 10(3): 227. |
18 | Zhou Q, Chen Q, Tong Y, et al. Light-induced ambient degradation of few-layer black phosphorus: mechanism and protection[J]. Angewandte Chemie-International Edition, 2016, 55(38): 11437-11441. |
19 | Sang D K, Wang H, Guo Z, et al. Recent developments in stability and passivation techniques of phosphorene toward next‐generation device applications[J]. Advanced Functional Materials, 2019, 29: 1903419. |
20 | Ling X, Wang H, Huang S X, et al. The renaissance of black phosphorus[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(15): 4523-4530. |
21 | Zhang C D, Lian J C, Yi W, et al. Surface structures of black phosphorus investigated with scanning tunneling microscopy[J]. Journal of Physical Chemistry C, 2009, 113(43): 18823-18826. |
22 | Appalakondaiah S, Vaitheeswaran G, Lebegue S, et al. Effect of van der Waals interactions on the structural and elastic properties of black phosphorus[J]. Physical Review B, 2012, 86(3): 9. |
23 | Zhang Z, Zhao Y P, Ouyang G. Strain modulation of electronic properties of monolayer black phosphorus[J]. Journal of Physical Chemistry C, 2017, 121(35): 19296-19304. |
24 | Wu J X, Mao N N, Xie L M, et al. Identifying the crystalline orientation of black phosphorus using angle-resolved polarized raman spectroscopy[J]. Angewandte Chemie-International Edition, 2015, 54(8): 2366-2369. |
25 | Li B S, Lai C, Zeng G M, et al. Black phosphorus, a rising star 2D nanomaterial in the post-graphene era: synthesis, properties, modifications, and photocatalysis applications[J]. Small, 2019, 15(8): 30. |
26 | Lopez-Bezanilla A. Effect of atomic-scale defects and dopants on phosphorene electronic structure and quantum transport properties[J]. Physical Review B, 2016, 93(3): 10. |
27 | Fei R X, Yang L. Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus[J]. Nano Letters, 2014, 14(5): 2884-2889. |
28 | Fujihisa H, Akahama Y, Kawamura H, et al. Incommensurate structure of phosphorus phase Ⅳ[J]. Physical Review Letters, 2007, 98(17): 4. |
29 | Zhu Z, Guan J, Tomanek D. Strain-induced metal-semiconductor transition in monolayers and bilayers of gray arsenic: a computational study[J]. Physical Review B, 2015, 91(16): 5. |
30 | Gong P L, Liu D Y, Yang K S, et al. Hydrostatic pressure induced three-dimensional dirac semimetal in black phosphorus[J]. Physical Review B, 2016, 93(19): 7. |
31 | Xiang Z J, Ye G J, Shang C, et al. Pressure-induced electronic transition in black phosphorus[J]. Physical Review Letters, 2015, 115(18): 5. |
32 | Guo H Y, Lu N, Dai J, et al. Phosphorene nanoribbons, phosphorus nanotubes, and van der Waals multilayers[J]. Journal of Physical Chemistry C, 2014, 118(25): 14051-14059. |
33 | Engel M, Steiner M, Avouris P. Black phosphorus photodetector for multispectral, high-resolution imaging[J]. Nano Letters, 2014, 14(11): 6414-6417. |
34 | Sa B S, Li Y L, Qi J S, et al. Strain engineering for phosphorene: the potential application as a photocatalyst[J]. Journal of Physical Chemistry C, 2014, 118(46): 26560-26568. |
35 | Ling X, Huang S X, Hasdeo E H, et al. Anisotropic electron-photon and electron-phonon interactions in black phosphorus [J]. Nano Letters, 2016, 16(7): 4731-4731. |
36 | Das S, Zhang W, Demarteau M, et al. Tunable transport gap in phosphorene[J]. Nano Letters, 2014, 14(10): 5733-5739. |
37 | Kou L Z, Chen C F, Smith S C. Phosphorene: fabrication, properties, and applications[J]. Journal of Physical Chemistry Letters, 2015, 6(14): 2794-2805. |
38 | Soldano C, Mahmood A, Dujardin E. Production, properties and potential of graphene[J]. Carbon, 2010, 48(8): 2127-2150. |
39 | 李玉苗. 黑磷薄膜材料的制备及其在器件中的应用[D]. 兰州: 兰州大学, 2019. |
Li Y M. Preparation of black phosphorus thin films and its application in devices[D]. Lanzhou: Lanzhou University, 2019. | |
40 | Luo Z, Maassen J, Deng Y X, et al. Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus[J]. Nature Communications, 2015, 6: 8. |
41 | Jain A, Mcgaughey A J H. Strongly anisotropic in-plane thermal transport in single-layer black phosphorene[J]. Scientific Reports, 2015, 5: 5. |
42 | Qin G Z, Yan Q B, Qin Z Z, et al. Anisotropic intrinsic lattice thermal conductivity of phosphorene from first principles[J]. Physical Chemistry Chemical Physics, 2015, 17(7): 4854-4858. |
43 | Zhu L Y, Zhang G, Li B W. Coexistence of size-dependent and size-independent thermal conductivities in phosphorene[J]. Physical Review B, 2014, 90(21): 6. |
44 | Wei Q, Peng X H. Superior mechanical flexibility of phosphorene and few-layer black phosphorus[J]. Applied Physics Letters, 2014, 104(25): 5. |
45 | Qin G Z, Yan Q B, Qin Z Z, et al. Hinge-like structure induced unusual properties of black phosphorus and new strategies to improve the thermoelectric performance[J]. Scientific Reports, 2014, 4: 8. |
46 | 王佳瑛. 黑磷光电特性及其异质结器件研究 [D]. 哈尔滨: 哈尔滨工业大学, 2015. |
Wang J Y. Electric and optoelectronic properties of black phosphorus and related heterostructures[D]. Harbin: Harbin Institute of Technology, 2015. | |
47 | Smith J B, Hagaman D, Ji H F. Growth of 2D black phosphorus film from chemical vapor deposition[J]. Nanotechnology, 2016, 27(21): 8. |
48 | Lewis E A, Brent J R, Derby B, et al. Solution processing of two-dimensional black phosphorus[J]. Chemical Communications, 2017, 53(9): 1445-1458. |
49 | Yang Z B, Hao J H, Yuan S G, et al. Field-effect transistors based on amorphous black phosphorus ultrathin films by pulsed laser deposition[J]. Advanced Materials, 2015, 27(25): 3748-3754. |
50 | Lu W, Nan H, Hong J, et al. Plasma-assisted fabrication of monolayer phosphorene and its Raman characterization[J]. Nano Research, 2014, 7(6): 853-859. |
51 | Brent J R, Savjani N, Lewis E A, et al. Production of few-layer phosphorene by liquid exfoliation of black phosphorus[J]. Chemical Communications, 2014, 50(87): 13338-13341. |
52 | Tang X, Liang W, Zhao J, et al. Fluorinated phosphorene: electrochemical synthesis, atomistic fluorination, and enhanced stability[J]. Small, 2017, 13(47): 1702739. |
53 | Liu H, Lian P, Zhang Q, et al. The preparation of holey phosphorene by electrochemical assistance[J]. Electrochemistry Communications, 2019, 98: 124-128. |
54 | Yang Y, Chen X, Lian P, et al. Production of phosphorene from black phosphorus via sonication and microwave Co-assisted aqueous phase exfoliation[J]. Chemistry Letters, 2018, 47(12): 1478-1481. |
55 | Castellanos-Gomez A, Vicarelli L, Prada E, et al. Isolation and characterization of few-layer black phosphorus[J]. 2D Materials, 2014, 1(2): 025001. |
56 | Ziletti A, Carvalho A, Campbell D K, et al. Oxygen defects in phosphorene[J]. Physical Review Letters, 2015, 114(4): 5. |
57 | Wood J D, Wells S A, Jariwala D, et al. Effective passivation of exfoliated black phosphorus transistors against ambient degradation[J]. Nano Letters, 2014, 14(12): 6964-6970. |
58 | Kim J S, Liu Y, Zhu W, et al. Toward air-stable multilayer phosphorene thin-films and transistors[J]. Scientific Reports, 2015, 5: 8989. |
59 | Favron A, Gaufres E, Fossard F, et al. Photooxidation and quantum confinement effects in exfoliated black phosphorus[J]. Nature Materials, 2015, 14(8): 826-832. |
60 | Pei J, Gai X, Yang J, et al. Producing air-stable monolayers of phosphorene and their defect engineering[J]. Nature Communications, 2016, 7: 10450. |
61 | Liang S, Wu L, Liu H, et al. Organic molecular passivation of phosphorene: an aptamer-based biosensing platform[J]. Biosens Bioelectron, 2019, 126: 30-35. |
62 | Son Y, Kozawa D, Liu A T, et al. A study of bilayer phosphorene stability under MoS2-passivation[J]. 2D Materials, 2017, 4(2): 025091. |
63 | Chen X, Wu Y, Wu Z, et al. High-quality sandwiched black phosphorus heterostructure and its quantum oscillations[J]. Nature Communications, 2015, 6: 7315. |
64 | Xing C Y, Jing G H, Liang X, et al. Graphene oxide/black phosphorus nanoflake aerogels with robust thermo-stability and significantly enhanced photothermal properties in air[J]. Nanoscale, 2017, 9(24): 8096-8101. |
65 | Ryder C R, Wood J D, Wells S A, et al. Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry[J]. Nature Chemistry, 2016, 8(6): 597-602. |
66 | Zhao Y, Wang H, Huang H, et al. Surface coordination of black phosphorus for robust air and water stability[J]. Angewandte Chemie-International Edition, 2016, 55(16): 5003-5007. |
67 | Zhu X, Zhang T, Jiang D, et al. Stabilizing black phosphorus nanosheets via edge-selective bonding of sacrificial C60 molecules[J]. Nature Communications, 2018, 9(1): 4177. |
68 | Liu H, Lian P, Tang Y, et al. Facile synthesis of an air-stable 3D reduced graphene oxide-phosphorene composite by sonication[J]. Applied Surface Science, 2019, 476: 972-981. |
69 | Li H, Lian P, Lu Q, et al. Excellent air and water stability of two-dimensional black phosphorene/MXene heterostructure[J]. Materials Research Express, 2019, 6(6): 065504. |
70 | Ren X, Mei Y, Lian P, et al. Fabrication and application of black phosphorene/graphene composite material as a flame retardant[J]. Polymers, 2019, 11(2): 193. |
71 | Yang B, Wan B, Zhou Q, et al. Te-doped black phosphorus field-effect transistors[J]. Advanced Materials, 2016, 28(42): 9408-9415. |
72 | Lv W, Yang B, Wang B, et al. Sulfur-doped black phosphorus field-effect transistors with enhanced stability[J]. ACS Applied Materials & Interfaces, 2018, 10(11): 9663-9668. |
73 | Wang Z, Lu J, Wang J, et al. Air-stable n-doped black phosphorus transistor by thermal deposition of metal adatoms[J]. Nanotechnology, 2019, 30(13): 135201. |
74 | Xu Y, Yuan J, Zhang K, et al. Field-induced N-doping of black phosphorus for CMOS compatible 2D logic electronics with high electron mobility[J]. Advanced Functional Materials, 2017, 27(38): 1702211. |
75 | 沈海云. 二维黑磷材料结构及其性质的理论研究[D]. 南京: 东南大学, 2018. |
Shen H Y. Theoretical study about the structure and properties of two-dimensional black phosphorus material[D]. Nanjing: Southeast University, 2018. |
[1] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[2] | Baiyu YANG, Yue KOU, Juntao JIANG, Yali ZHAN, Qinghong WANG, Chunmao CHEN. Chemical conversion of dissolved organic matter in petrochemical spent caustic along a wet air oxidation pretreatment process [J]. CIESC Journal, 2023, 74(9): 3912-3920. |
[3] | Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf) [J]. CIESC Journal, 2023, 74(9): 3968-3978. |
[4] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[5] | Jintong LI, Shun QIU, Wenshou SUN. Oxalic acid and UV enhanced arsenic leaching from coal in flue gas desulfurization by coal slurry [J]. CIESC Journal, 2023, 74(8): 3522-3532. |
[6] | Yuyuan ZHENG, Zhiwei GE, Xiangyu HAN, Liang WANG, Haisheng CHEN. Progress and prospect of medium and high temperature thermochemical energy storage of calcium-based materials [J]. CIESC Journal, 2023, 74(8): 3171-3192. |
[7] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[8] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[9] | Lingding MENG, Ruqing CHONG, Feixue SUN, Zihui MENG, Wenfang LIU. Immobilization of carbonic anhydrase on modified polyethylene membrane and silica [J]. CIESC Journal, 2023, 74(8): 3472-3484. |
[10] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[11] | Meibo XING, Zhongtian ZHANG, Dongliang JING, Hongfa ZHANG. Enhanced phase change energy storage/release properties by combining porous materials and water-based carbon nanotube under magnetic regulation [J]. CIESC Journal, 2023, 74(7): 3093-3102. |
[12] | Bin LI, Zhenghu XU, Shuang JIANG, Tianyong ZHANG. Clean and efficient synthesis of accelerator CBS by hydrogen peroxide catalytic oxidation method [J]. CIESC Journal, 2023, 74(7): 2919-2925. |
[13] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[14] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[15] | Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance [J]. CIESC Journal, 2023, 74(7): 2908-2918. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||