CIESC Journal ›› 2020, Vol. 71 ›› Issue (6): 2612-2627.DOI: 10.11949/0438-1157.20200103
• Reviews and monographs • Previous Articles Next Articles
Shuang ZONG1,2(),Xinying LIU2,Aibing CHEN1()
Received:
2020-02-03
Revised:
2020-04-10
Online:
2020-06-05
Published:
2020-06-05
Contact:
Aibing CHEN
通讯作者:
陈爱兵
作者简介:
宗爽(1984—),女,硕士研究生,基金资助:
CLC Number:
Shuang ZONG, Xinying LIU, Aibing CHEN. Metal-organic frameworks-derived zero-dimensional materials for supercapacitors[J]. CIESC Journal, 2020, 71(6): 2612-2627.
宗爽, 刘歆颖, 陈爱兵. 金属有机框架衍生的0维材料在超级电容器中的应用[J]. 化工学报, 2020, 71(6): 2612-2627.
Fig.1 The preparation procedure of nano-hexahedron porous carbon (a); structural characterization of the nano-hexahedron porous carbon[(b)—(e)]; electrochemical performance of the nano-hexahedron porous carbon electrode (f) [46]
Fig.2 Schematic illustration of the formation process of double-shelled Zn-Co-S RDCs (a); structural characterization of the single-shelled Zn-Co-S RDCs[(b)—(e)]; electrochemical performance of the double-shelled and single-shelled Zn-Co-S RDCs [(f)—(h)][47]
Fig.3 Schematic illustration of the formation process of NixSy@CoS double-shelled nanocages (a); structural characterization of the NixSy@CoS double-shelled nanocages[(b)—(d)]; electrochemical performance of the NixSy@CoS double-shelled nanocages[(e),(f)] [48]
Fig.4 Electrochemical performance of the FeCo2O4 samples[(a)—(c)]; structural characterization of the pure ZIF-67, Fe-Co-ZIF-67(d) and FeCo2O4 (e) samples[49]
Fig.5 SEM (a) and TEM (b) images of the hybrid porous Co3O4-CeO2 hollow polyhedrons; GCD curves (c) and Ragone plots (d) of the hybrid porous Co3O4-CeO2 hollow polyhedrons [50]
Fig.6 Schematic diagram of the formation of the N and S co-doped hollow cellular carbon nanocapsules (h-CNST) (a); SEM images of the h-CNS900 hollow cellular carbon nanocapsules (b); TEM images of the h-CNS900 hollow cellular carbon nanocapsules (c); HAADF-STEM images of the h-CNS900 hollow cellular carbon nanocapsules (d); variation of specific capacitance as a function of current density for h-CNS900, CNS900 and C900 at 1 mol·L-1 H2SO4 electrolyte (e); variation of specific capacitance as a function of current densities at IL electrolyte (f) [55]
Fig.8 Schematic illustration of the synthesis procedure of the starfish-shaped porous Co3O4/ZnFe2O4 hollow nanocomposite (a); TEM image of Co3O4/ZnFe2O4 hollow nanocomposites (b); TEM images of Co3O4 nanocages (c); electrochemical performance of Co3O4, ZnFe2O4, Co3O4/ZnFe2O4 [(d)—(g)] [57]
Fig.9 Schematic illustration of the fabrication processes of NiS hierarchical hollow cubes (a); TEM image of the NiS hierarchical hollow cubes (b); electrochemical performance of the NiS hierarchical hollow cubes[(c)—(e)] [64]
Fig.10 Schematic illustration of synthetic process for the attainment of nanoporous carbon-PANI core-shell nanocomposite materials(a); structural characterization of the nanoporous carbon-PANI core-shell nanocomposite materials (b)[66]; electrochemical performance of the carbon-PANI (CP-CP) nanocomposite[(c), (d)]
Fig.11 Schematic illustration of the formation process of Co3O4/NiCo2O4 DSNCs (a); structural characterization of the Co3O4/NiCo2O4 DSNCs and Co3O4 NCs (b); electrochemical performance of Co3O4/NiCo2O4 DSNCs and Co3O4 NCs [(c), (d)] [67]
Fig.12 Schematic illustration for the fabrication of quadruple-shelled CoS2 hollow dodecahedrons electrodes by stepwise synthesis approach (a); electrochemical performance of the quadruple-shelled CoS2 hollow dodecahedrons (b); SEM, TEM and HRTEM images of quadruple-shelled CoS2 hollow dodecahedrons [(c),(d)][68]
类别 | MOF前体 | 电解质 | 电流密度/(A·g-1) | 电化学性能/(F·g-1) | 参考文献 |
---|---|---|---|---|---|
双金属MOF | Ni/Co-MOF | 3 mol·L-1 KOH | 1 | 1067 | [ |
Co/Fe-MOF | 1 mol·L-1 LiOH | 1 | 319.5 | [ | |
ZIF-CoZn | 3 mol·L-1 KCl | 1 | 340.7 | [ | |
多面体 | ZIF-8 | 2 mol·L-1 KOH | 0.5 | 187 | [ |
Zn/Co-ZIF | 6 mol·L-1 KOH | 1 | 1266 | [ | |
ZIF-67 | 6 mol·L-1 KOH | 1 | 2291.4 | [ | |
Fe-Co-ZIF | 1 mol·L-1 KOH | 1 | 510 | [ | |
ZIF-67 | 3 mol·L-1 KOH | 2.5 | 1288.3 | [ | |
中空结构 | MIL-101-NH2 | 1 mol·L-1 H2SO4 | 0.1 | 261 | [ |
ZIF-67 | 3 mol·L-1 KOH | 5.55 F·cm-2 | 1110 | [ | |
Co3O4/FeIII-MOF-5 | 6 mol·L-1 KOH | 1 | 326.7 | [ | |
[CH3NH3][Ni(HCOO)3] | 2 mol·L-1 KOH | 1 | 874.5 | [ | |
核壳结构 | ZIF-8 | 1 mol·L-1 H2SO4 | 5 mV·s-1 | 1100 | [ |
ZIF-67 | 1 mol·L-1 KOH | 5 | 972 | [ | |
ZIF-67 | 2 mol·L-1 KOH | 1 | 375.2 | [ |
Table 1 Electrochemical performance of MOFs and MOFs-derived zero-dimensional materials
类别 | MOF前体 | 电解质 | 电流密度/(A·g-1) | 电化学性能/(F·g-1) | 参考文献 |
---|---|---|---|---|---|
双金属MOF | Ni/Co-MOF | 3 mol·L-1 KOH | 1 | 1067 | [ |
Co/Fe-MOF | 1 mol·L-1 LiOH | 1 | 319.5 | [ | |
ZIF-CoZn | 3 mol·L-1 KCl | 1 | 340.7 | [ | |
多面体 | ZIF-8 | 2 mol·L-1 KOH | 0.5 | 187 | [ |
Zn/Co-ZIF | 6 mol·L-1 KOH | 1 | 1266 | [ | |
ZIF-67 | 6 mol·L-1 KOH | 1 | 2291.4 | [ | |
Fe-Co-ZIF | 1 mol·L-1 KOH | 1 | 510 | [ | |
ZIF-67 | 3 mol·L-1 KOH | 2.5 | 1288.3 | [ | |
中空结构 | MIL-101-NH2 | 1 mol·L-1 H2SO4 | 0.1 | 261 | [ |
ZIF-67 | 3 mol·L-1 KOH | 5.55 F·cm-2 | 1110 | [ | |
Co3O4/FeIII-MOF-5 | 6 mol·L-1 KOH | 1 | 326.7 | [ | |
[CH3NH3][Ni(HCOO)3] | 2 mol·L-1 KOH | 1 | 874.5 | [ | |
核壳结构 | ZIF-8 | 1 mol·L-1 H2SO4 | 5 mV·s-1 | 1100 | [ |
ZIF-67 | 1 mol·L-1 KOH | 5 | 972 | [ | |
ZIF-67 | 2 mol·L-1 KOH | 1 | 375.2 | [ |
1 | Deng J, Li M M, Wang Y. Biomass-derived carbon: synthesis and applications in energy storage and conversion[J]. Green Chemistry, 2016, 18(18): 4824-4854. |
2 | Yu D B, Wu B, Ge L, et al. Decorating nanoporous ZIF-67-derived NiCo2O4 shells on a Co3O4 nanowire array core for battery-type electrodes with enhanced energy storage performance[J]. Journal of Materials Chemistry A, 2016, 4(28): 10878-10884. |
3 | Guo N N, Li M, Sun X K, et al. Enzymatic hydrolysis lignin derived hierarchical porous carbon for supercapacitors in ionic liquids with high power and energy densities[J]. Green Chemistry, 2017, 19(11): 2595-2602. |
4 | Xia W, Mahmood A, Zou R Q, et al. Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion[J]. Energy & Environmental Science, 2015, 8(7): 1837-1866. |
5 | Wang L, Han Y Z, Feng X, et al. Metal-organic frameworks for energy storage: batteries and supercapacitors[J]. Coordination Chemistry Reviews, 2016, 307(2): 361-381. |
6 | Liang H Y, Lin J H, Jia H N, et al. Hierarchical NiCo-LDH@NiOOH core-shell heterostructure on carbon fiber cloth as battery-like electrode for supercapacitor[J]. Journal of Power Sources, 2018, 378: 248-254. |
7 | Huang M, Zhang Y X, Li F, et al. Merging of Kirkendall growth and Ostwald ripening: CuO@MnO2 core-shell architectures for asymmetric supercapacitors[J]. Scientific Reports, 2014, 4: 4518. |
8 | Wang G P, Zhang L, Zhang J J. A review of electrode materials for electrochemical supercapacitors[J]. Chemical Society Reviews, 2012, 41(2): 797-828. |
9 | Ma W J, Chen S H, Yang S Y, et al. Hierarchical MnO2 nanowire/graphene hybrid fibers with excellent electrochemical performance for flexible solid-state supercapacitors[J]. Journal of Power Sources, 2016, 306: 481-488. |
10 | Wang D W, Fang G L, Xue T, et al. A melt route for the synthesis of activated carbon derived from carton box for high performance symmetric supercapacitor applications[J]. Journal of Power Sources, 2016, 307: 401-409. |
11 | Wu S L, Zhu Y W. Highly densified carbon electrode materials towards practical supercapacitor devices[J]. Science China Materials, 2017, 60(1): 25-38. |
12 | Gamby J, Taberna P L, Simon P, et al. Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors[J]. Journal of Power Sources, 2001, 101(1): 109-116. |
13 | Portet C, Taberna P L, Simon P, et al. High power density electrodes for carbon supercapacitor applications[J]. Electrochimica Acta, 2005, 50(20): 4174-4181. |
14 | Hsieh T F, Chuang C C, Liu M Y, et al. A new way to manufacture a carbon nanotubes supercapacitor[C]//Advanced Materials Research. Trans. Tech. Publications Ltd., 2009, 79: 47-50. |
15 | Pan H, Li J Y, Feng Y P. Carbon nanotubes for supercapacitor[J]. Nanoscale Research Letters, 2010, 5(3): 654-668. |
16 | González A, Goikolea E, Barrena J A, et al. Review on supercapacitors: technologies and materials[J]. Renewable and Sustainable Energy Reviews, 2016, 58: 1189-1206. |
17 | Wang Y, Shi Z Q, Huang Y, et al. Supercapacitor devices based on graphene materials[J]. The Journal of Physical Chemistry C, 2009, 113(30): 13103-13107. |
18 | Huang Y, Liang J J, Chen Y S. An overview of the applications of graphen-based materials in supercapacitors[J]. Small, 2012, 8(12): 1805-1834. |
19 | Wang J G, Kang F Y, Wei B Q. Engineering of MnO2-based nanocomposites for high-performance supercapacitors[J]. Progress in Materials Science, 2015, 74: 51-124. |
20 | Liu M K, Du Y F, Miao Y E, et al. Anisotropic conductive films based on highly aligned polyimide fibers containing hybrid materials of graphene nanoribbons and carbon nanotubes[J]. Nanoscale, 2015, 7(3): 1037-1046. |
21 | Wang K, Zhang X, Sun X Z, et al. Conducting polymer hydrogel materials for high-performance flexible solid-state supercapacitors[J]. Science China Materials, 2016, 59(6): 412-420. |
22 | Huang C, Young N P, Grant P S. Spray processing of TiO2 nanoparticle/ionomer coatings on carbon nanotube scaffolds for solid-state supercapacitors[J]. Journal of Materials Chemistry A, 2014, 2(29): 11022-11028. |
23 | Zhang H B, Nai J W, Yu L, et al. Metal-organic-framework-based materials as platforms for renewable energy and environmental applications[J]. Joule, 2017, 1(1): 77-107. |
24 | Trickett C A, Helal A, Al-Maythalony B A, et al. The chemistry of metal-organic frameworks for CO2 capture, regeneration and conversion[J]. Nature Reviews Materials, 2017, 2(8): 1-16. |
25 | Meng W, Zeng Y F, Liang Z B, et al. Tuning expanded pores in metal-organic frameworks for selective capture and catalytic conversion of carbon dioxide[J]. ChemSusChem, 2018, 11(21): 3751-3757. |
26 | Wu C D, Zhao M. Incorporation of molecular catalysts in metal-organic frameworks for highly efficient heterogeneous catalysis[J]. Advanced Materials, 2017, 29(14): 1605446. |
27 | Liang J, Liang Z B, Zou R Q, et al. Heterogeneous catalysis in zeolites, mesoporous silica, and metal-organic frameworks[J]. Advanced Materials, 2017, 29(30): 1701139. |
28 | Yuan H Y, Aljneibi S A A A, Yuan J R, et al. Biosensors: ZnO nanosheets abundant in oxygen vacancies derived from metal-organic frameworks for ppb-level gas sensing [J]. Advanced Materials, 2019, 31(11): 1970076. |
29 | Wang M J, Shen Z R, Zhao X D, et al. Rational shape control of porous Co3O4 assemblies derived from MOF and their structural effects on n-butanol sensing[J]. Journal of Hazardous Materials, 2019, 371: 352-361. |
30 | Wu M X, Yang Y W. Metal-organic framework (MOF)-based drug/cargo delivery and cancer therapy[J]. Advanced Materials, 2017, 29(23): 1606134. |
31 | Zhao S F, Zeng L Z, Cheng G, et al. Ni/Co-based metal-organic frameworks as electrode material for high performance supercapacitors[J]. Chinese Chemical Letters, 2019, 30(3): 605-609. |
32 | Yu H N, Xia H C, Zhang J N, et al. Fabrication of Fe-doped Co-MOF with mesoporous structure for the optimization of supercapacitor performances[J]. Chinese Chemical Letters, 2018, 29(6): 834-836. |
33 | Dang S, Zhu Q L, Xu Q. Nanomaterials derived from metal-organic frameworks[J]. Nature Reviews Materials, 2018, 3(1): 17075. |
34 | Liang Z B, Zhao R, Qiu T J, et al. Metal-organic framework-derived materials for electrochemical energy applications[J]. Energy Chem., 2019, 1(1): 100001. |
35 | Zhu C M, He Y, Liu Y J, et al. ZnO@MOF@PANI core-shell nanoarrays on carbon cloth for high-performance supercapacitor electrodes[J]. Journal of Energy Chemistry, 2019, 35: 124-131. |
36 | Liu B, Shioyama H, Akita T, et al. Metal-organic framework as a template for porous carbon synthesis[J]. Journal of the American Chemical Society, 2008, 130(16): 5390-5391. |
37 | Hu H, Guan B Y, Xia B Y, et al. Designed formation of Co3O4/NiCo2O4 double-shelled nanocages with enhanced pseudocapacitive and electrocatalytic properties[J]. Journal of the American Chemical Society, 2015, 137(16): 5590-5595. |
38 | Pachfule P, Shinde D, Majumder M, et al. Fabrication of carbon nanorods and graphene nanoribbons from a metal-organic framework[J]. Nature Chemistry, 2016, 8(7): 718-724. |
39 | Cao X H, Tan C L, Sindoro M, et al. Hybrid micro-/nano-structures derived from metal-organic frameworks: preparation and applications in energy storage and conversion[J]. Chemical Society Reviews, 2017, 46(10): 2660-2677. |
40 | Liang Z B, Qu C, Guo W H, et al. Pristine metal-organic frameworks and their composites for energy storage and conversion[J]. Advanced Materials, 2018, 30(37): 1702891. |
41 | Wu H B, Xia B Y, Yu L, et al. Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen production[J]. Nature Communications, 2015, 6(1): 1-8. |
42 | Chen Y Z, Wang C M, Wu Z Y, et al. From bimetallic metal-organic framework to porous carbon: high surface area and multicomponent active dopants for excellent electrocatalysis[J]. Advanced Materials, 2015, 27(34): 5010-5016. |
43 | Zhang J T, Li Z, Chen Y, et al. Nickel-iron layered double hydroxide hollow polyhedrons as a superior sulfur host for lithium-sulfur batteries[J]. Angewandte Chemie, 2018, 57(34): 10944-10948. |
44 | Gu H C, Kong L J, Cui H J, et al. Fabricating high-performance sodium ion capacitors with P2-Na0.67Co0.5Mn0.5O2 and MOF-derived carbon[J]. Journal of Energy Chemistry, 2018, 28: 79-84. |
45 | You B, Jiang N, Sheng M L, et al. High-performance overall water splitting electrocatalysts derived from cobalt-based metal-organic frameworks[J]. Chemistry of Materials, 2015, 27(22): 7636-7642. |
46 | Wu J, Zhang X P, Wei F X, et al. Controllable synthesis of ZIF-derived nano-hexahedron porous carbon for supercapacitor electrodes[J]. Materials Letters, 2020, 258: 126761. |
47 | Zhang P, Guan B Y, Yu L, et al. Formation of double-shelled zinc-cobalt sulfide dodecahedral cages from bimetallic zeolitic imidazolate frameworks for hybrid supercapacitors[J]. Angewandte Chemie International Edition, 2017, 56(25): 7141-7145. |
48 | Gao R S, Zhang Q G, Soyekwo F, et al. Novel amorphous nickel sulfide@CoS double-shelled polyhedral nanocages for supercapacitor electrode materials with superior electrochemical properties[J]. Electrochimica Acta, 2017, 237: 94-101. |
49 | Liu X, Wei F X, Sui Y W, et al. Polyhedral ternary oxide FeCo2O4: a new electrode material for supercapacitors[J]. Journal of Alloys and Compounds, 2018, 735: 1339-1343. |
50 | Wei C Z, Liu K F, Tao J, et al. Self-template synthesis of hybrid porous Co3O4-CeO2 hollow polyhedrons for high-performance supercapacitors[J]. Chemistry-An Asian Journal, 2018, 13(1): 111-117. |
51 | Shang L, Yu H J, Huang X, et al. Well-dispersed ZIF-derived Co, N-Co-doped carbon nanoframes through mesoporous-silica-protected calcination as efficient oxygen reduction electrocatalysts[J]. Advanced Materials, 2016, 28(8): 1668-1674. |
52 | Li X, Sun Q, Liu J, et al. Tunable porous structure of metal organic framework derived carbon and the application in lithium–sulfur batteries[J]. Journal of Power Sources, 2016, 302: 174-179. |
53 | Yu L, Wu H B, Lou X W D. Self-templated formation of hollow structures for electrochemical energy applications[J]. Accounts of Chemical Research, 2017, 50(2): 293-301. |
54 | Tang Y F, Chen S J, Mu S C, et al. Synthesis of capsule-like porous hollow nanonickel cobalt sulfides via cation exchange based on the Kirkendall effect for high-performance supercapacitors[J]. ACS Applied Materials & Interfaces, 2016, 8(15): 9721-9732. |
55 | Zhu Q L, Pachfule P, Strubel P, et al. Fabrication of nitrogen and sulfur co-doped hollow cellular carbon nanocapsules as efficient electrode materials for energy storage[J]. Energy Storage Materials, 2018, 13: 72-79. |
56 | Zhang Y Z, Wang Y, Xie Y L, et al. Porous hollow Co3O4 with rhombic dodecahedral structures for high-performance supercapacitors[J]. Nanoscale, 2014, 6(23): 14354-14359. |
57 | Hu X W, Liu S, Qu B T, et al. Starfish-shaped Co3O4/ZnFe2O4 hollow nanocomposite: synthesis, supercapacity, and magnetic properties[J]. ACS Applied Materials & Interfaces, 2015, 7(18): 9972-9981. |
58 | Rui X H, Tan H T, Yan Q Y. Nanostructured metal sulfides for energy storage[J]. Nanoscale, 2014, 6(17): 9889-9924. |
59 | Wang T S, Hu P, Zhang C J, et al. Nickel disulfide-graphene nanosheets composites with improved electrochemical performance for sodium ion battery[J]. ACS Applied Materials & Interfaces, 2016, 8(12): 7811-7817. |
60 | Li W J, Han C, Chou S L, et al. Graphite-nanoplate-coated Bi2S3 composite with high-volume energy density and excellent cycle life for room-temperature sodium-sulfide batteries[J]. Chemistry-A European Journal, 2016, 22(2): 590-597. |
61 | Yang W L, Wang H, Liu T T, et al. A Bi2S3@CNT nanocomposite as anode material for sodium ion batteries[J]. Materials Letters, 2016, 167: 102-105. |
62 | Choi J H, Ha C W, Choi H Y, et al. Sb2S3 embedded in amorphous P/C composite matrix as high-performance anode material for sodium ion batteries[J]. Electrochimica Acta, 2016, 210: 588-595. |
63 | He P L, Yu X Y, Lou X W. Carbon-incorporated nickel-cobalt mixed metal phosphide nanoboxes with enhanced electrocatalytic activity for oxygen evolution[J]. Angewandte Chemie International Edition, 2017, 56(14): 3897-3900. |
64 | Ma X, Zhang L, Xu G H, et al. Facile synthesis of NiS hierarchical hollow cubes via Ni formate frameworks for high performance supercapacitors[J]. Chemical Engineering Journal, 2017, 320: 22-28. |
65 | Nai J W, Tian Y, Guan X, et al. Pearson s principle inspired generalized strategy for the fabrication of metal hydroxide and oxide nanocages[J]. Journal of the American Chemical Society, 2013, 135(43): 16082-16091. |
66 | Salunkhe R R, Tang J, Kobayashi N, et al. Ultrahigh performance supercapacitors utilizing core-shell nanoarchitectures from a metal-organic framework-derived nanoporous carbon and a conducting polymer[J]. Chemical Science, 2016, 7(9): 5704-5713. |
67 | Hu H, Guan B Y, Xia B Y, et al. Designed formation of Co3O4/NiCo2O4 double-shelled nanocages with enhanced pseudocapacitive and electrocatalytic properties[J]. Journal of the American Chemical Society, 2015, 137(16): 5590-5595. |
68 | Jia H N, Wang Z Y, Zheng X H, et al. Controlled synthesis of MOF-derived quadruple-shelled CoS2 hollow dodecahedrons as enhanced electrodes for supercapacitors[J]. Electrochimica Acta, 2019, 312: 54-61. |
[1] | Jing LI, Conghao SHEN, Daliang GUO, Jing LI, Lizheng SHA, Xin TONG. Research progress in the application of lignin-based carbon fiber composite materials in energy storage components [J]. CIESC Journal, 2023, 74(6): 2322-2334. |
[2] | Dong XU, Du TIAN, Long CHEN, Yu ZHANG, Qingliang YOU, Chenglong HU, Shaoyun CHEN, Jian CHEN. Preparation and electrochemical energy storage of polyaniline/manganese dioxide/polypyrrole composite nanospheres [J]. CIESC Journal, 2023, 74(3): 1379-1389. |
[3] | ZHANG Jiahe, YUAN Ye, WANG Ming, WANG Zhi, WANG Jixiao. Research progress in polymer-metal-organic frameworks [J]. CIESC Journal, 2021, 72(2): 709-726. |
[4] | Bo LIU, Yichang PAN, Rongfei ZHOU, Weihong XING. Research progress on microstructure regulation of molecular sieving membranes for H2/CH4 separation [J]. CIESC Journal, 2021, 72(12): 6073-6085. |
[5] | Meng JIA, Jiabin ZHANG, Yaqing FENG, Bao ZHANG. Application of metal-porphyrin-based frameworks in photocatalysis [J]. CIESC Journal, 2020, 71(9): 4046-4057. |
[6] | Feng ZHOU, Lijun TIAN, Lei GAO, Zhongshuai WU. Few-layer graphene via electrochemically cathodic exfoliation for micro-supercapacitors [J]. CIESC Journal, 2020, 71(6): 2724-2734. |
[7] | Jie ZHAO,Yue GUO,Zhen SHEN,Lijun YANG,Qiang WU,Xizhang WANG,Zheng HU. Research progress of high-rate capacity layered double hydroxide supercapacitor materials [J]. CIESC Journal, 2020, 71(11): 4851-4872. |
[8] | Bingbing HU, Shu YANG, Yan LI, Chuanlan XU, Peng CHEN, Jingjing YU, Danmei YU, Changguo CHEN. Construction of free binder V2O5 and Fe2O3 flexible electrode and its application in supercapacitor [J]. CIESC Journal, 2020, 71(10): 4836-4846. |
[9] | Liang GE,Bin WU,Xin WANG,Zhang ZHAO,Tongwen XU. Application in water system separation of MOFs separation membranes [J]. CIESC Journal, 2019, 70(10): 3748-3763. |
[10] | WEI Jinzhi, ZHANG Shaoping, WANG Xueliang, SUN Xiaojun, ZHANG Fengming. Preparation of ethanedithiol modified Cu-MOFs and its adsorption performance for mercury [J]. CIESC Journal, 2017, 68(5): 2186-2194. |
[11] | LI Heshun, GAO Lixin, ZHANG Daquan, LIN Tong. Preparation of niobium pentoxide loaded on porous carbon and its application in supercapacitors [J]. CIESC Journal, 2016, 67(7): 3071-3077. |
[12] | ZHANG Lifeng, DU Suqing, LIU Yi, YUAN Xiaoyan, HUANG Jianfeng, GUO Shouwu. Applications of cyanate ionic liquids in graphene-based supercapacitors [J]. CIESC Journal, 2016, 67(12): 5276-5282. |
[13] | LI Ji, WEI Tong, YAN Jun, LONG Conglai, FAN Zhuangjun. Preparation of graphene nanosheet/CoS2 composite and its application in supercapacitors [J]. CIESC Journal, 2014, 65(7): 2849-2854. |
[14] | FENG Huixia,WANG Bin,TAN Lin,LUO Heming,ZHANG Deyi. Progress in the research on conductive polymer-based electrode materials for supercapacitors [J]. Chemical Industry and Engineering Progree, 2014, 33(03): 689-695. |
[15] | WAN Houzhao, MIAO Ling, XU Kui, QI Tong, JIANG Jianjun. Manganese oxide-based electrode behavior as materials for electrochemical supercapacitors [J]. CIESC Journal, 2013, 64(3): 801-813. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 571
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 650
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||