[1] |
Winter M, Brodd R J. What are batteries, fuel cells, and supercapacitors[J]. Chem. Rev., 2004, 104(10): 4245-4269
|
[2] |
Pandolfo A G, Hollenkamp A F. Carbon properties and their role in supercapacitors[J]. J. Power Sources, 2006, 157(1): 11-27
|
[3] |
Zhu T, Wu H B. Formation of 1D hierarchical structures composed of Ni3S2 nanosheets on CNTs backbone for supercapacitors and photocatalytic H2 production[J]. Adv. Energy Mater., 2012, 2(12): 1497-1502
|
[4] |
Geim A K, Novoselov K S. The rise of graphene[J]. Nature, 2007, 6: 183-191
|
[5] |
Yan J, Wei T. Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance[J]. Carbon, 2010, 48(2): 487-493
|
[6] |
Jiang D, Cooper V R. Porous graphene as the ultimate membrane for gas separation[J]. Nano Lett., 2009, 9(12): 4019-4024
|
[7] |
Paek S M, Yoo E J. Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure[J]. Nano Lett., 2009, 9(1): 72-75
|
[8] |
Yan J, Fan Z J. Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density[J]. Adv. Funct. Mater., 2012, 22(12): 2632-2641
|
[9] |
Dai Chunling(戴春岭), Wang Xianyou(王先友), Huang Qinghua(黄庆华), Li Jun(李俊). Activated carbon prepared from water soluble phenol-formaldehyde resin for application in supercapacitor[J]. Journal of Chemical Industry and Engineering(China)(化工学报), 2008, 59(4): 1058-1064
|
[10] |
Fan Z J, Yan J. A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors[J]. Adv. Mater., 2010, 22(33): 3723-3728
|
[11] |
Wang B, Park J, Su D W, Wang C Y, Ahn H, Wang G X. Solvothermal synthesis of CoS2-graphene nanocomposite material for high-performance supercapacitors [J]. J. Mater. Chem., 2012,22: 15750-15756
|
[12] |
Wang A M, Wang H L, Zhang S Y, Mao C J. Controlled synthesis of nickel sulfide/graphene oxide nanocomposite for high-performance supercapacitor[J]. Appl. Surf. Sci., 2013, 282(1): 704-708
|
[13] |
Xing Z C, Chu Q X, Ren X B. Biomolecule-assisted synthesis of nickel sulfides/reduced graphene oxide nanocomposites as electrode materials for supercapacitors[J]. Electrochem. Commun., 2013, 32: 9-13
|
[14] |
Wang B, Park J. Solvothermal synthesis of CoS2-graphene nanocomposite material for high-performance supercapacitors[J]. J. Mater. Chem., 2012, 22: 15750-15756
|
[15] |
Marcano D C, Kosynkin D V, Berlin J M, Sinitskii A, Sun Z, Slesarev A, Alemany L B, Lu W, Tour J M. Improved synthesis of graphene oxide[J]. ACS Nano, 2010, 4(8):4806-4814
|
[16] |
Xiang C C, Li M. A reduced graphene oxide/Co3O4 composite for supercapacitor electrode[J]. J. Power Sources, 2013, 226(15): 65-70
|
[17] |
Chen C Y, Shih Z Y. Carbon nanotubes/cobalt sulfide composites as potential high-rate and high-efficiency supercapacitors[J]. J. Power Sources, 2012, 215(1): 43-47
|
[18] |
Wu Z S, Ren W C. High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors[J]. ACS Nano, 2010, 4(10): 5835-5842
|
[19] |
Dai Honglei(代红蕾), Tian Yanhong(田艳红), Zhang Xuejun(张学军), Zhang Sha(张莎). Preparation of polyaniline/activated carbon used for supercapacitor film electrode by cyclic voltammetry[J]. CIESC Journal(化工学报), 2012, 63(10): 3330-3336
|
[20] |
Wan Houzhao(万厚钊), Miao Ling(缪灵), Xu Kui(徐葵). Manganese oxide-based electrode behavior as materials for electrochemical supercapacitors[J]. CIESC Journal(化工学报), 2013, 64(3): 801-813
|
[21] |
Wang H L, Liang Y Y. Advanced asymmetrical supercapacitors based on graphene hybrid materials[J]. Nano Res., 2011, 4(8): 729-736
|