CIESC Journal ›› 2020, Vol. 71 ›› Issue (10): 4836-4846.DOI: 10.11949/0438-1157.20191307

• Material science and engineering, nanotechnology • Previous Articles    

Construction of free binder V2O5 and Fe2O3 flexible electrode and its application in supercapacitor

Bingbing HU(),Shu YANG,Yan LI,Chuanlan XU,Peng CHEN,Jingjing YU,Danmei YU(),Changguo CHEN   

  1. Schoolge of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
  • Received:2019-11-01 Revised:2020-03-02 Online:2020-10-05 Published:2020-10-05
  • Contact: Danmei YU

免黏结剂V2O5和Fe2O3柔性电极的构建及在超级电容器中的应用

胡兵兵(),杨束,李彦,徐川岚,陈鹏,于晶晶,余丹梅(),陈昌国   

  1. 重庆大学化学化工学院,重庆 401331
  • 通讯作者: 余丹梅
  • 作者简介:胡兵兵(1993—),男,博士研究生,20151802054@cqu.edu.cn
  • 基金资助:
    国家自然科学基金项目(21406021)

Abstract:

In recent years, more and more research has been devoted to the development of new electrode materials with ultra-high energy density and high Faraday reaction activity, especially applying them to a new generation of supercapacitor energy storage systems. In this study, sea urchin-shaped V2O5 nanospheres and tetrakaidecahedron Fe2O3 nano boxes have been grown directly on flexible matrix carbon cloth by hydrothermal method. The hydrothermal time can control the microstructure of V2O5, and the morphology determines the performance of energy storage, the positive electrode material of sea urchin-shaped V2O5 nanosphere exhibits a maximum specific capacitance of 535 F·g-1. In addition, the tetrakaidecahedron Fe2O3 nano box is used as the negative electrode, and a new structure V2O5//Fe2O3 flexible supercapacitor is assembled. When the power density is 699.49 W·kg-1, the energy density can reach 46.06 W·h·kg-1. Moreover, it also has good mechanical flexibility, and the specific capacity retention rate is still as high as 83.4% after 5000 times of 180° bending cycle tests. This work provides a general and effective strategy for developing the next generation flexible electronic devices with ultra-high energy density.

Key words: electrochemistry, nanomaterials, hydrothermal, supercapacitors, vanadium pentoxide, ferric oxide

摘要:

近年来,越来越多的研究致力于开发新型、超高能量密度、高法拉第反应活性的电极材料,尤其将其应用于新一代超级电容器储能系统。通过水热法直接在柔性基质碳布上生长海胆状V2O5纳米球和十四面体Fe2O3纳米盒子。V2O5微观结构和储能性能可通过改变水热时间进行调控。海胆状V2O5纳米球正极材料具有最高比容量535 F·g-1。以十四面体Fe2O3纳米盒子作为负极材料组装的新型结构V2O5-CC//Fe2O3-CC柔性超级电容器,在功率密度为699.49 W·kg-1时,能量密度可达46.06 W·h·kg-1。而且具有良好的机械柔韧性,在180°弯曲循环测试5000次,比容量保持率仍高达83.4%。研究为开发下一代超高能量密度、柔性电子器件提供了一种通用而有效的策略。

关键词: 电化学, 纳米材料, 水热, 超级电容器, 五氧化二钒, 三氧化二铁

CLC Number: