CIESC Journal ›› 2020, Vol. 71 ›› Issue (10): 4836-4846.DOI: 10.11949/0438-1157.20191307
• Material science and engineering, nanotechnology • Previous Articles
Bingbing HU(),Shu YANG,Yan LI,Chuanlan XU,Peng CHEN,Jingjing YU,Danmei YU(),Changguo CHEN
Received:
2019-11-01
Revised:
2020-03-02
Online:
2020-10-05
Published:
2020-10-05
Contact:
Danmei YU
胡兵兵(),杨束,李彦,徐川岚,陈鹏,于晶晶,余丹梅(),陈昌国
通讯作者:
余丹梅
作者简介:
胡兵兵(1993—),男,博士研究生,基金资助:
CLC Number:
Bingbing HU, Shu YANG, Yan LI, Chuanlan XU, Peng CHEN, Jingjing YU, Danmei YU, Changguo CHEN. Construction of free binder V2O5 and Fe2O3 flexible electrode and its application in supercapacitor[J]. CIESC Journal, 2020, 71(10): 4836-4846.
胡兵兵, 杨束, 李彦, 徐川岚, 陈鹏, 于晶晶, 余丹梅, 陈昌国. 免黏结剂V2O5和Fe2O3柔性电极的构建及在超级电容器中的应用[J]. 化工学报, 2020, 71(10): 4836-4846.
Add to citation manager EndNote|Ris|BibTeX
Fig.6 CV curves (a), GCD curves (b), specific capacitances at different current densities (c) and electrochemical impedance spectra (d) of V2O5-CC materials with different reaction time. CV curves at various scan rates (e) and GCD curves at various current densities (f) of V2O5-6h materials
Fig.8 CV curves (a), GCD curves (b), specific capacitances at different current densities (c), power density vs energy density (d), CV curves at different bending angles (e) and cycling stability of V2O5-CC//Fe2O3-CC ASCs
1 | Islam M S, Fisher C A. Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties[J]. Chemical Society Reviews, 2014, 43(1): 185-204. |
2 | Simon P, Gogotsi Y, Dunn B. Where do batteries end and supercapacitors begin?[J]. Science, 2014, 343(6176): 1210-1211. |
3 | Li Q, Xu Y, Zheng S, et al. Recent progress in some amorphous materials for supercapacitors[J]. Small, 2018, 14(28): e1800426. |
4 | Peng H, Yao B, Wei X, et al. Pore and heteroatom engineered carbon foams for supercapacitors[J]. Advanced Energy Materials, 2019, 9(19): 1803665. |
5 | 张亚婷, 张凯博, 贾凯丽, 等. 柔性自支撑PDDA-Si/G纳米复合薄膜的制备及储锂性能[J]. 化工学报, 2019, 70(3): 1144-1151. |
Zhang Y T, Zhang K B, Jia K L, et al. Preparation and lithium storage properties of flexible self-standing PDDA-Si/G nanocomposite film [J]. CIESC Journal, 2019, 70(3): 1144-1151. | |
6 | Wang Q, Zhang Y, Jiang H, et al. Designed mesoporous hollow sphere architecture metal (Mn, Co, Ni) silicate: a potential electrode material for flexible all solid-state asymmetric supercapacitor[J]. Chemical Engineering Journal, 2019, 362: 818-829. |
7 | Zuo W, Li R, Zhou C, et al. Battery-supercapacitor hybrid devices: recent progress and future prospects[J]. Advance Science, 2017, 4(7): 1600539. |
8 | Kim H S, Cook J B, Lin H, et al. Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3-x[J]. Nature Materials, 2017, 16(4), 454-460. |
9 | Zhang Y, Wang C, Jiang H, et al. Cobalt-nickel silicate hydroxide on amorphous carbon derived from bamboo leaves for hybrid supercapacitors[J]. Chemical Engineering Journal, 2019, 375: 121938. |
10 | 禹兴海, 罗齐良, 潘剑, 等. 一种生物炭基柔性固态超级电容器的制备及性能研究[J]. 化工学报, 2019, 70(9): 3590-3600. |
Yu X H, Luo Q L, Pan J, et al. Preparation and properties of flexible supercapacitor based on biochar and solid gel-electrolyte[J]. CIESC Journal, 2019, 70(9): 3590-3600. | |
11 | Shi P, Li L, Hua L, et al. Design of amorphous manganese oxide@multiwalled carbon nanotube fiber for robust solid-state supercapacitor[J]. ACS Nano, 2017, 11 (1): 444-452. |
12 | Wang J, Zhang X, Wei Q, et al. 3D self-supported nanopine forest-like Co3O4@CoMoO4 core–shell architectures for high-energy solid state supercapacitors[J]. Nano Energy, 2016, 19: 222-233. |
13 | Chen C, Wang S, Luo X, et al. Reduced ZnCo2O4@NiMoO4•H2O heterostructure electrodes with modulating oxygen vacancies for enhanced aqueous asymmetric supercapacitors[J]. Journal of Power Sources, 2019, 409: 112-122. |
14 | Hosseini H, Shahrokhian S. Advanced binder-free electrode based on core–shell nanostructures of mesoporous Co3V2O8-Ni3V2O8 thin layers@porous carbon nanofibers for high-performance and flexible all-solid-state supercapacitors[J]. Chemical Engineering Journal, 2018, 341: 10-26. |
15 | Chen C, Yan D, Luo X, et al. Construction of core-shell NiMoO4@Ni-Co-S nanorods as advanced electrodes for high-performance asymmetric supercapacitors[J]. ACS Appllied Material & Interfaces, 2018, 10(5): 4662-4671. |
16 | Costentin C, Porter T R, Saveant J M. How do pseudocapacitors store energy? Theoretical analysis and experimental illustration [J]. ACS Appllied Material & Interfaces, 2017, 9(10): 8649-8658. |
17 | Yang J, Liu W, Niu H, et al. Ultrahigh energy density battery-type asymmetric supercapacitors: NiMoO4 nanorod-decorated graphene and graphene/Fe2O3 quantum dots [J]. Nano Research, 2018, 11(9): 4744-4758. |
18 | Wei X, Zhang Y, He H, et al. Carbon-incorporated NiO/Co3O4 concave surface microcubes derived from a MOF precursor for overall water splitting [J]. Chemical Communication, 2019, 55(46): 6515-6518. |
19 | Hu B B, Xiang Q, Cen Y, et al. In situ constructing flexible V2O5@GO composite thin film electrode for superior electrochemical energy storage[J]. Journal of the Electrochemical Society, 2018, 165(16): A3738-A3747. |
20 | Yang Y, Tang Y, Fang G, et al. Li+ intercalated V2O5•nH2O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode[J]. Energy & Environmental Science, 2018, 11(11): 3157-3162. |
21 | Zhang N, Jia M, Dong Y, et al. Hydrated layered vanadium oxide as a highly reversible cathode for rechargeable aqueous zinc batteries[J]. Advanced Functional Materials, 2019, 29(10): 1807331. |
22 | Ma J, Guo X, Yan Y, et al. FeOx-based materials for electrochemical energy storage[J]. Advanced Science, 2018, 5(6): 1700986. |
23 | Zeng Y, Yu M, Meng Y, et al. Iron-based supercapacitor electrodes: advances and challenges[J]. Advanced Energy Materials, 2016, 6(24): 1601053. |
24 | Wang J G, Liu H, Liu H, et al. Interfacial constructing flexible V2O5@polypyrrole core-shell nanowire membrane with superior supercapacitive performance[J]. ACS Appllied Material & Interfaces, 2018, 10(22): 18816-18823. |
25 | Xia H, Hong C, Li B, et al. Facile synthesis of hematite quantum-dot/functionalized graphene-sheet composites as advanced anode materials for asymmetric supercapacitors[J]. Advanced Functional Materials, 2015, 25(4): 627-635. |
26 | Jiang H, Cai X, Qian Y, et al. V2O5 embedded in vertically aligned carbon nanotube arrays as free-standing electrodes for flexible supercapacitors[J]. Journal of Materials Chemistry A, 2017, 5(45): 23727-23736. |
27 | Liu H, Tang Y, Wang C, et al. A lyotropic liquid-crystal-based assembly avenue toward highly oriented vanadium pentoxide/graphene films for flexible energy storage[J]. Advanced Functional Materials, 2017, 27(12): 1606269. |
28 | Li H, Wei C, Wang L, et al. Hierarchical vanadium oxide microspheres forming from hyperbranched nanoribbons as remarkably high performance electrode materials for supercapacitors[J]. Journal of Materials Chemistry A, 2015, 3(45): 22892-22901. |
29 | Lee M, Balasingam S K, Hu Y J, et al. One-step hydrothermal synthesis of graphene decorated V2O5 nanobelts for enhanced electrochemical energy storage[J]. Scientific Reports, 2015, 5: 8151. |
30 | Li Y, Xu J, Feng T, et al. Fe2O3 nanoneedles on ultrafine nickel nanotube arrays as efficient anode for high-performance asymmetric supercapacitors[J]. Advanced Functional Materials, 2017, 27: 1606728. |
31 | Fang K, Chen J, Zhou X, et al. Decorating biomass-derived porous carbon with Fe2O3 ultrathin film for high-performance supercapacitors[J]. Electrochimica Acta, 2018, 261: 198-205. |
32 | Wang H, Xu C, Chen Y, et al. MnO2 nanograsses on porous carbon cloth for flexible solid-state asymmetric supercapacitors with high energy density[J]. Energy Storage Materials2017, 8: 127-133. |
33 | Wang L, Yang H, Liu X, et al. Constructing hierarchical tectorum-like α-Fe2O3/PPy nanoarrays on carbon cloth for solid-state asymmetric supercapacitors[J]. Angewandte Chemie-International Edition, 2018, 56 (4): 1105-1110. |
34 | Salanne M, Rotenberg B, Naoi K, et al. Efficient storage mechanisms for building better supercapacitors[J]. Nature Energy, 2016, 1(6): 16070. |
35 | Chen Y, Zhang Z, Huang, Z, et al. Effects of oxygen-containing functional groups on the supercapacitor performance of incompletely reduced graphene oxides[J]. International Journal of Hydrogen Energy, 2017, 42(10): 7186-7194. |
36 | Xing L L, Zhao G G, Huang K J, et al. A yolk-shell V2O5 structure assembled from ultrathin nanosheets and coralline-shaped carbon as advanced electrodes for a high-performance asymmetric supercapacitor[J]. Dalton Transactions, 2018, 47(7): 2256-2265. |
37 | Qian T, Xu N, Zhou J, et al. Interconnected three-dimensional V2O5/polypyrrole network nanostructures for high performance solid-state supercapacitors[J]. Journal of Materials Chemistry A, 2015, 3(2): 488-493. |
38 | Liu Q, Li Z F, Liu Y, et al. Graphene-modified nanostructured vanadium pentoxide hybrids with extraordinary electrochemical performance for Li-ion batteries[J]. Nature Communication, 2015, 6(1): 6127. |
39 | Gu T, Wei B. High-performance all-solid-state asymmetric stretchable supercapacitors based on wrinkled MnO2/CNT and Fe2O3/CNT macrofilms[J]. Journal of Materials Chemistry A, 2016, 4(31): 12289-12295. |
40 | Serrapede M, Rafique A, Fontana, Met al. Fiber-shaped asymmetric supercapacitor exploiting rGO/Fe2O3 aerogel and electrodeposited MnOx nanosheets on carbon fibers[J]. Carbon, 2019, 144: 91-100. |
41 | Lin Z, Yan X, Lang J, et al. Adjusting electrode initial potential to obtain high-performance asymmetric supercapacitor based on porous vanadium pentoxide nanotubes and activated carbon nanorods[J]. Journal of Power Sources, 2015, 279: 358-364. |
[1] | Chao HU, Yuming DONG, Wei ZHANG, Hongling ZHANG, Peng ZHOU, Hongbin XU. Preparation of high-concentration positive electrolyte of vanadium redox flow battery by activating vanadium pentoxide with highly concentrated sulfuric acid [J]. CIESC Journal, 2023, 74(S1): 338-345. |
[2] | Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf) [J]. CIESC Journal, 2023, 74(9): 3968-3978. |
[3] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[4] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[5] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[6] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[7] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[8] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[9] | Meibo XING, Zhongtian ZHANG, Dongliang JING, Hongfa ZHANG. Enhanced phase change energy storage/release properties by combining porous materials and water-based carbon nanotube under magnetic regulation [J]. CIESC Journal, 2023, 74(7): 3093-3102. |
[10] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[11] | Jing LI, Conghao SHEN, Daliang GUO, Jing LI, Lizheng SHA, Xin TONG. Research progress in the application of lignin-based carbon fiber composite materials in energy storage components [J]. CIESC Journal, 2023, 74(6): 2322-2334. |
[12] | Qin YANG, Chuanjian QIN, Mingzi LI, Wenjing YANG, Weijie ZHAO, Hu LIU. Fabrication and properties of dual shape memory MXene based hydrogels for flexible sensor [J]. CIESC Journal, 2023, 74(6): 2699-2707. |
[13] | Yuanchao LIU, Xuhao JIANG, Ke SHAO, Yifan XU, Jianbin ZHONG, Zhuan LI. Influence of geometrical dimensions and defects on the thermal transport properties of graphyne nanoribbons [J]. CIESC Journal, 2023, 74(6): 2708-2716. |
[14] | Ruikang LI, Yingying HE, Weipeng LU, Yuanyuan WANG, Haodong DING, Yongming LUO. Study on the electrochemical enhanced cobalt-based cathode to activate peroxymonosulfate [J]. CIESC Journal, 2023, 74(5): 2207-2216. |
[15] | Xu GUO, Yongzheng ZHANG, Houbing XIA, Na YANG, Zhenzhen ZHU, Jingyao QI. Research progress in the removal of water pollutants by carbon-based materials via electrooxidation [J]. CIESC Journal, 2023, 74(5): 1862-1874. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||