CIESC Journal ›› 2020, Vol. 71 ›› Issue (6): 2724-2734.DOI: 10.11949/0438-1157.20200259
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Feng ZHOU1(),Lijun TIAN2,Lei GAO2,Zhongshuai WU1()
Received:
2020-03-13
Revised:
2020-04-01
Online:
2020-06-05
Published:
2020-06-05
Contact:
Zhongshuai WU
通讯作者:
吴忠帅
作者简介:
周锋(1984—),男,博士,副研究员,基金资助:
CLC Number:
Feng ZHOU, Lijun TIAN, Lei GAO, Zhongshuai WU. Few-layer graphene via electrochemically cathodic exfoliation for micro-supercapacitors[J]. CIESC Journal, 2020, 71(6): 2724-2734.
周锋, 田利军, 高磊, 吴忠帅. 电化学阴极剥离制备少层石墨烯及其微型超级电容器[J]. 化工学报, 2020, 71(6): 2724-2734.
电解质 | 浓度 | 槽电压/V | 时间/min | 结果 |
---|---|---|---|---|
氢氧化钾 | 6 mol·L-1 | 10 | 30 | 高效剥离 |
氢氧化钾 | 3 mol·L-1 | 10 | 30 | 低效剥离 |
氢氧化钾 | 0.5 mol·L-1 | 10 | 30 | 无剥离 |
氢氧化钠 | 6 mol·L-1 | 10 | 30 | 高效剥离 |
硫酸钠 | 饱和 | 10 | 30 | 无剥离 |
氯化钾 | 饱和 | 10 | 30 | 有效剥离 |
溴化钾 | 饱和 | 10 | 30 | 有效剥离 |
碘化钾 | 6 mol·L-1 | 10 | 30 | 高效剥离 |
Table 1 Summary of electrolytes investigated in the electrochemical cathodic exfoliation of graphite
电解质 | 浓度 | 槽电压/V | 时间/min | 结果 |
---|---|---|---|---|
氢氧化钾 | 6 mol·L-1 | 10 | 30 | 高效剥离 |
氢氧化钾 | 3 mol·L-1 | 10 | 30 | 低效剥离 |
氢氧化钾 | 0.5 mol·L-1 | 10 | 30 | 无剥离 |
氢氧化钠 | 6 mol·L-1 | 10 | 30 | 高效剥离 |
硫酸钠 | 饱和 | 10 | 30 | 无剥离 |
氯化钾 | 饱和 | 10 | 30 | 有效剥离 |
溴化钾 | 饱和 | 10 | 30 | 有效剥离 |
碘化钾 | 6 mol·L-1 | 10 | 30 | 高效剥离 |
Element | Mass/% | Atomic/% |
---|---|---|
C | 98.45 | 98.95 |
O | 1.27 | 0.96 |
K | 0.28 | 0.09 |
Table 2 EDS of EG
Element | Mass/% | Atomic/% |
---|---|---|
C | 98.45 | 98.95 |
O | 1.27 | 0.96 |
K | 0.28 | 0.09 |
1 | Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. |
2 | Sutter P W, Flege J I, Sutter E A, Epitaxial graphene on ruthenium [J]. Nat. Mater., 2008, 7(5): 406-411. |
3 | Berger C, Song Z, Li X, et al. Electronic confinement and coherence in patterned epitaxial graphene[J]. Science, 2006, 312(5777): 1191-1196. |
4 | Reina A, Jia X, Ho J, et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition[J]. Nano Lett., 2009, 9(1): 30-35. |
5 | Bae S, Kim H K, Lee Y B, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes[J]. Nat. Nanotechnol., 2010, 5(8): 574-578. |
6 | Park S, Ruoff R S. Chemical methods for the production of graphenes[J]. Nat. Nanotechnol., 2009, 4(4): 217-224. |
7 | Cote L J, Kim F, Huang J. Langmuir-Blodgett assembly of graphite oxide single layers[J]. J. Am. Chem. Soc., 2009, 131(3): 1043-1049. |
8 | Li D, Muller M B, Gilje S, et al. Processable aqueous dispersions of graphene nanosheets[J]. Nat. Nanotechnol., 2008, 3(2): 101-105. |
9 | Gao W, Alemany L B, Ci L, et al. New insights into the structure and reduction of graphite oxide[J]. Nat. Chem., 2009, 1(5): 403-408. |
10 | Chen C M, Yang Q H, Yang Y G, et al. Self-assembled free-standing graphite oxide membrane[J]. Adv. Mater., 2009, 21(29): 3007-3011. |
11 | Li X, Wang H, Robinson J T, et al. Simultaneous nitrogen doping and reduction of graphene oxide[J]. J. Am. Chem. Soc., 2009, 131(43): 15939-15944. |
12 | Wei Y, Sun Z Y. Liquid-phase exfoliation of graphite for mass production of pristine few-layer graphene[J]. Current Opinion in Colloid and Interface Science, 2015, 20(5): 311-321. |
13 | Hernandez Y, Nicolosi V, Lotya M, et al. High-yield production of graphene by liquid-phase exfoliation of graphite[J]. Nat. Nanotechnol., 2008, 3(9): 563-568. |
14 | Blake P, Brimicombe P D, Nai R R, et al. Graphene-based liquid crystal device[J]. Nano Lett., 2008, 8(6): 1704-1708. |
15 | De S, King P J, Lotya M, et al. Flexible, transparent, conducting films of randomly stacked graphene from surfactant -stabilized, oxide-free graphene dispersions[J]. Small, 2010, 6(3): 458-464. |
16 | Biswas S, Drzal L T. A novel approach to create a highly ordered monolayer film of graphene nanosheets at the liquid-liquid interface[J]. Nano Lett., 2009, 9(1): 167-172. |
17 | Gu W T, Zhang W, Li X M, et al. Graphene sheets from worm-like exfoliated graphite[J]. J. Mater. Chem., 2009, 19(21): 3367-3369. |
18 | Su C Y, Lu A Y, Xu Y P, et al. High-quality thin graphene films from fast electrochemical exfoliation[J]. ACS Nano, 2011, 5(3): 2332-2339. |
19 | Liu J, Yang H, Zhen S G, et al. A green approach to the synthesis of high-quality graphene oxide flakes via electrochemical exfoliation of pencil core[J]. RSC Adv., 2013, 3(29): 11745-11750. |
20 | Parvez K, Wu Z S, Li R, et al. Exfoliation of graphite into graphene in aqueous solutions of inorganic salts[J]. J. Am. Chem. Soc., 2014, 136(16): 6083-6091. |
21 | Wang G X, Wang B, Park J, et al. Highly efficient and large scale synthesis of graphene by electrolytic exfoliation[J]. Carbon, 2009, 47(14): 3242-3246. |
22 | Lu J, Yang J X, Wang J Z, et al. One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids[J]. ACS Nano, 2009, 3(8): 2367-2375. |
23 | Wang J, Yin H S, Meng X M, et al. Preparation of the mixture of graphene nanosheets and carbon nanospheres with high desorptivity by electrolyzing graphite rod and its application in hydroquinone detection[J]. J. Electronal. Chem., 2011, 662(2): 317-321. |
24 | Singh V V, Gupta G, Batra A, et al. Greener electrochemical synthesis of high quality graphene nanosheets directly from pencil and its SPR sensing application[J]. Adv. Funct. Mater., 2012, 22(11): 2352-2362. |
25 | Zhong Y L, Swager T M. Enhanced electrochemical expansion of graphite for in situ electrochemical functionalization[J]. J. Am. Chem. Soc., 2012, 134(43): 17896-17899. |
26 | Zhou F, Huang H B, Xiao C X, et al. Electrochemically scalable production of fluorine modified graphene for flexible and high-energy ionogel-based micro-supercapacitors[J]. J. Am. Chem. Soc., 2018, 140(26): 8198-8205. |
27 | Wang J, Manga K K, Bao Q, et al. High-yield synthesis of few layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electorlyte[J]. J. Am. Chem. Soc., 2011, 133(23): 8888-8891. |
28 | Liu N, Luo F, Wu H, et al. One-step ionic liquids-assisted electrochemical synthesis of ionic-liquids-functionalized graphene sheets directly from graphite[J]. Adv. Funct. Mater., 2008, 18(10): 1518-1525. |
29 | Zhou M, Tang J, Cheng Q, et al. Few-layer graphene obtained by electrochemical exfoliation of graphite cathode[J]. Chem. Phys. Lett., 2013, 572: 61-65. |
30 | Suo L M, Borodin O, Gao T, et al. “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries[J]. Science, 2015, 350(6263): 938-943. |
31 | Zhou F, Liu S M, Yang B Q, et al. Highly selective electrocatalytic reduction of carbon dioxide to carbon monoxide on silver electrode with aqueous ionic liquids[J]. Electrochem. Commun., 2014, 46: 103-106. |
32 | Xiao H, Wu Z-S, Chen L, et al. One-step device fabrication of phosphorene and graphene interdigital micro-supercapacitors with high energy density[J]. ACS Nano, 2017, 11(7): 7284-7292. |
33 | Wu Z-K, Lin Z, Li L, et al. Flexible micro-supercapacitor based on in-situ assembled graphene on metal template at room temperature[J]. Nano Energy, 2014, 10: 222-228. |
34 | Watanabe M, Thomas M L, Zhang S G, et al. Application of ionic liquids to energy storage and conversion materials and devices[J]. Chem. Rev., 2017, 117(10): 7190-7239. |
35 | El-Kady M F, Strong V, Dubin S, et al. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors[J]. Science, 2012, 335(6074): 1326-1330. |
36 | Wu Z-S, Parvez K, Feng X, et al. Graphene-based in-plane micro-supercapacitors with high power and energy densities[J]. Nat. Commun., 2013, 4: 2487-2494. |
37 | Heon M, Lofland S, Applegate J, et al. Continuous carbide-derived carbon films with high volumetric capacitance[J]. Energy Environ. Sci., 2011, 4(1): 135-138. |
38 | Ghosh A, Viet T L, Bae J J, et al. TLM-PSD model for optimization of energy and power density of vertically aligned carbon nanotube supercapacitor[J]. Sci. Rep., 2013, 3: 2939. |
39 | Pech D, Brunet M, Durou H, et al. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon[J]. Nat. Nanotechnol., 2010, 5(9): 651-654. |
[1] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[2] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[3] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[4] | Zhen LI, Bo ZHANG, Liwei WANG. Development and properties of PEG-EG solid-solid phase change materials [J]. CIESC Journal, 2023, 74(6): 2680-2688. |
[5] | Hao GU, Fujian ZHANG, Zhen LIU, Wenxuan ZHOU, Peng ZHANG, Zhongqiang ZHANG. Desalination performance and mechanism of porous graphene membrane in temporal dimension under mechanical-electrical coupling [J]. CIESC Journal, 2023, 74(5): 2067-2074. |
[6] | Jianglong DU, Wenqi YANG, Kai HUANG, Cheng LIAN, Honglai LIU. Heat dissipation performance of the module combined CPCM with air cooling for lithium-ion batteries [J]. CIESC Journal, 2023, 74(2): 674-689. |
[7] | Houchuan YU, Teng REN, Ning ZHANG, Xiaobin JIANG, Yan DAI, Xiaopeng ZHANG, Junjiang BAO, Gaohong HE. Advances in two-dimensional graphene oxide membrane for ion selective transport [J]. CIESC Journal, 2023, 74(1): 303-312. |
[8] | Wenzhang JIN, Yuling ZHANG, Xiaoyu JIA. Study on degradation efficiency of hydroxyethylidene diphosphonic acid by electrochemical advanced oxidation [J]. CIESC Journal, 2022, 73(9): 4062-4069. |
[9] | Kai HUANG, Sijie WANG, Haiping SU, Cheng LIAN, Honglai LIU. First principle study on inhibition of lithium dendrites growth by regulating graphene layer spacings [J]. CIESC Journal, 2022, 73(8): 3501-3510. |
[10] | Shuang HAN, Nan ZHANG, Hui WANG, Xuan ZHANG, Jinluan YANG, Manlin ZHANG, Zhichao ZHANG. Preparation and application of chlortetracycline electrochemical sensor based on molecularly imprinting technique [J]. CIESC Journal, 2022, 73(8): 3758-3767. |
[11] | Hongchao LIU, Suhang CHEN, Xianli DUAN, Fan WU, Xiaofei XU, Xianyu SONG, Shuangliang ZHAO, Honglai LIU. Transport behavior of Janus graphene quantum dots in biomembrane: a molecular dynamics simulation [J]. CIESC Journal, 2022, 73(7): 2835-2843. |
[12] | Wenjing ZHANG, Jing LI, Zidong WEI. Electrocatalysis from a mesoscale perspective: interface, membrane and porous electrode [J]. CIESC Journal, 2022, 73(6): 2289-2305. |
[13] | Zhichao LI, Yu ZHENG, Runnan ZHANG, Zhongyi JIANG. Research progress of high flux and antifouling graphene oxide membranes [J]. CIESC Journal, 2022, 73(6): 2370-2380. |
[14] | Yuzhe LIU, Chengcai LI, Lin LI, Shaohui WANG, Peihui LIU, Tonghua WANG. Structure-property relationship between microstructure of activated carbon and supercapacitor performance [J]. CIESC Journal, 2022, 73(4): 1807-1816. |
[15] | Miao ZHANG, Honghai YANG, Yong YIN, Yue XU, Junjie SHEN, Xincheng LU, Weigang SHI, Jun WANG. Start-up and heat transfer characteristics of a pulsating heat pipe with graphene oxide nanofluids [J]. CIESC Journal, 2022, 73(3): 1136-1146. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 410
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 647
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||