CIESC Journal ›› 2020, Vol. 71 ›› Issue (10): 4711-4719.DOI: 10.11949/0438-1157.20200346
• Separation engineering • Previous Articles Next Articles
Jiayuan HE1(),Zhuangfei JIANG1,Rongrong MA1,Lili YANG1,Qingyao LI1,Ling TAN2,Zhitao CHEN1,Qihui ZHANG1()
Received:
2020-04-01
Revised:
2020-05-22
Online:
2020-10-05
Published:
2020-10-05
Contact:
Qihui ZHANG
何家垣1(),蒋壮飞1,马蓉蓉1,杨莉莉1,李清瑶1,谭玲2,陈志涛1,张起辉1()
通讯作者:
张起辉
作者简介:
何家垣(1995-),男,硕士研究生,基金资助:
CLC Number:
Jiayuan HE, Zhuangfei JIANG, Rongrong MA, Lili YANG, Qingyao LI, Ling TAN, Zhitao CHEN, Qihui ZHANG. Magnetic temperature-sensitive molecularly imprinted materials for separation and enrichment of single component of formononetin in medicinal plants[J]. CIESC Journal, 2020, 71(10): 4711-4719.
何家垣, 蒋壮飞, 马蓉蓉, 杨莉莉, 李清瑶, 谭玲, 陈志涛, 张起辉. 磁性温敏分子印迹材料用于药用植物中富集单一成分——芒柄花黄素的分离与富集[J]. 化工学报, 2020, 71(10): 4711-4719.
Add to citation manager EndNote|Ris|BibTeX
Fig.3 FT-IR spectra of MTMIPs and Fe3O4@SiO2 (a); TGA analysis curves of MTMIPs (b); Magnetization curves of MTMIPs and Fe3O4 nanoparticles (c); XRD pattern of Fe3O4, Fe3O4@SiO2 and MTMIPs nanoparticles(d)
材料 | Langmuir | Freundlich | |||
---|---|---|---|---|---|
R2 | KL/(ml/mg) | R2 | α | m | |
MTNIPs | 0.994 | 0.010 | 0.951 | 0.364 | 0.537 |
MTMIPs | 0.966 | 0.005 | 0.805 | 0.185 | 0.798 |
Table 1 The fitting parameters of isothermal adsorption model
材料 | Langmuir | Freundlich | |||
---|---|---|---|---|---|
R2 | KL/(ml/mg) | R2 | α | m | |
MTNIPs | 0.994 | 0.010 | 0.951 | 0.364 | 0.537 |
MTMIPs | 0.966 | 0.005 | 0.805 | 0.185 | 0.798 |
材料 | Pseudo-first-order | Pseudo-second-order | ||
---|---|---|---|---|
K1/min-1 | R2 | K2/(g/(mg·min)) | R2 | |
MTNIPs | 0.053 | 0.860 | 0.050 | 0.955 |
MTMIPs | 0.061 | 0.918 | 0.007 | 0.988 |
Table 2 The fitting parameters of adsorption kinetics model
材料 | Pseudo-first-order | Pseudo-second-order | ||
---|---|---|---|---|
K1/min-1 | R2 | K2/(g/(mg·min)) | R2 | |
MTNIPs | 0.053 | 0.860 | 0.050 | 0.955 |
MTMIPs | 0.061 | 0.918 | 0.007 | 0.988 |
Samples | Regression analysis | Precision | |||||
---|---|---|---|---|---|---|---|
Standard curves | Correlation coefficient | Linear range/(μg/ml) | LOD/(μg/ml) | LOQ/(μg/ml) | Intra-day RSD/% | Inter-day RSD/% | |
daidzein | y=521.8x-66.35 | 0.992 | 5—100 | 0.015 | 0.045 | 0.61 | 1.52 |
formononetin | y=520.5x-202.7 | 0.993 | 5—100 | 0.017 | 0.063 | 0.89 | 1.28 |
genistein | y=481.2x-34.31 | 0.992 | 5—100 | 0.027 | 0.125 | 0.62 | 1.54 |
Table 3 Data of methodological examination in selective research
Samples | Regression analysis | Precision | |||||
---|---|---|---|---|---|---|---|
Standard curves | Correlation coefficient | Linear range/(μg/ml) | LOD/(μg/ml) | LOQ/(μg/ml) | Intra-day RSD/% | Inter-day RSD/% | |
daidzein | y=521.8x-66.35 | 0.992 | 5—100 | 0.015 | 0.045 | 0.61 | 1.52 |
formononetin | y=520.5x-202.7 | 0.993 | 5—100 | 0.017 | 0.063 | 0.89 | 1.28 |
genistein | y=481.2x-34.31 | 0.992 | 5—100 | 0.027 | 0.125 | 0.62 | 1.54 |
Fig.6 HPLC diagrams of the MTMIPs practical application: (1) HPLC diagram of the formononetin mother solution; (2) The HPLC diagram of MTMIPs eluents; (3) HPLC diagram of crude extracts after MTMIPs absorbed; (4) HPLC diagram of crude extracts from Trifolium pratense L.
1 | 王晓燕. 红车轴草异黄酮提取、分离纯化及其抗氧化活性的研究[D]. 西安: 西北大学, 2013. |
Wang X Y. The effect on extraction, isolation and purification and antioxidant activity of the isoflavones in Trifolium pratense L[D]. Xi'an: Northwest University, 2013. | |
2 | Mu H, Bai Y H, Wang S T, et al. Research on antioxidant effects and estrogenic effect of formononetin from Trifolium pratense (red clover)[J]. Phytomedicine International Journal of Phytotherapy & Phytopharmacology, 2009, 16(4): 314-319. |
3 | Brad K, Zhang Y, Gao J. Extraction and purification of formonometin from Trifolium pratense L: physicochemical properties of its complex with lecithin[J]. Tropical Journal of Pharmaceutical Research, 2017, 16(8): 1757-1764. |
4 | Snauwaert C, Vos M D, Looze D D. Formononetin induces cell cycle arrest of human breast cancer cells via IGF1/PI3K/Akt pathways in vitro and in vivo[J]. Hormone and Metabolic Research, 2011, 43(10): 681-686. |
5 | Park J, Kim S H, Cho D, et al. Formononetin, a phyto-oestrogen, and its metabolites up-regulate interleukin-4 production in activated T cells via increased AP-1 DNA binding activity[J]. Insect Science, 2005, 116(1): 71-81. |
6 | Gao D, Wang D D, Fu Q F, et al. Preparation and evaluation of magnetic molecularly imprinted polymers for the specific enrichment of phloridzin[J]. Talanta, 2018, 178: 299-307. |
7 | Pedrazza G P R, Morais C B, Dettenborn G R, et al. Anti-inflammatory activity and chemical analysis of extracts from Trifolium riograndense[J]. Brazilian Journal of Pharmacognosy, 2017, 27(3): 334-338. |
8 | Ganzera M. Supercritical fluid chromatography for the separation of isoflavones[J]. Journal of Pharmaceutical and Biomedical Analysis, 2015, 107: 364-369. |
9 | Renda G, Yalcin F N, Nemutlu E, et al. Comparative assessment of dermal wound healing potentials of various Trifolium L. extracts and determination of their isoflavone contents as potential active ingredients[J]. Journal of Ethnopharmacology, 2013, 148(2): 423-432. |
10 | Zgorka G. Pressurized liquid extraction versus other extraction techniques in micropreparative isolation of pharmacologically active isoflavones from Trifolium L. species[J]. Talanta, 2009, 79(1): 46-53. |
11 | Zhang Y, Liu C, Pan Y, et al. Ultrasound-assisted dynamic extraction coupled with parallel countercurrent chromatography for simultaneous extraction, purification, and isolation of phytochemicals: application to isoflavones from red clover[J]. Analytical and Bioanalytical Chemistry, 2015, 407(16): 4597-4606. |
12 | Visnevschi-Necrasov T, Cunha S C, Nunes Eugénia, et al. Optimization of matrix solid-phase dispersion extraction method for the analysis of isoflavones in Trifolium pratense[J]. Journal of Chromatography A, 2009, 1216(18): 3720-3724. |
13 | Chrzanowska A M, Poliwoda A, Wieczorek P P. Surface molecularly imprinted silica for selective solid-phase extraction of biochanin A, daidzein and genistein from urine samples[J]. Journal of Chromatography A, 2015, 1392(Complete): 1-9. |
14 | Feng F, Zheng J, Qin P, et al. A novel quartz crystal microbalance sensor array based on molecular imprinted polymers for simultaneous detection of clenbuterol and its metabolites[J]. Talanta, 2017, 167(Complete): 94-102. |
15 | Li W, Zhang Q, Wang Y, et al. Controllably prepared aptamer-molecularly imprinted polymer hybrid for high-specificity and high-affinity recognition of target proteins[J]. Analytical Chemistry, 2019, 91(7): 4831-4837. |
16 | Liu Y L, Liu R, Qin Y, et al. Flexible electrochemical urea sensor based on surface molecularly imprinted nanotubes for detection of human sweat[J]. Analytical Chemistry, 2018, 90(21): 13081-13087. |
17 | Xie J, Xiong J, Ding L S, et al. A efficient method to identify cardioprotective components of Astragali Radix using a combination of molecularly imprinted polymers-based knockout extract and activity evaluation[J]. Journal of Chromatography A, 2018, 1576: 10-18. |
18 | Zhang Y, Liu D H, Peng J, et al. Magnetic hyperbranched molecularly imprinted polymers for selective enrichment and determination of zearalenone in wheat proceeded by HPLC-DAD analysis[J]. Talanta, 2019, 209: 120555. |
19 | Zhou Y, Liu H C, Li J M, et al. Restricted access magnetic imprinted microspheres for directly selective extraction of tetracycline veterinary drugs from complex samples[J]. Journal of Chromatography A, 2019, 1613: 460684. |
20 | Li H J, Wang Y, Li Y, et al. High-sensitive molecularly imprinted sensor with multilayer nanocomposite for 2, 6-dichlorophenol detection based on surface-enhanced Raman scattering[J]. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy, 2019, 228: 117784. |
21 | Kazemifard N, Ensafi A A, Rezaei B. Green synthesized carbon dots embedded in silica molecularly imprinted polymers, characterization and application as a rapid and selective fluorimetric sensor for determination of thiabendazole in juices[J]. Food Chemistry, 2020, 310: 125812. |
22 | Liu Y, Chen P, Zheng S, et al. Novel fluorescent sensor using molecularly imprinted silica microsphere coated CdSe@CdS quantum dots and its application in the detection of 2, 4, 6‐trichlorophenol from environmental water samples[J]. Luminescence, 2019, 34(7): 680-688. |
23 | Piletsky S, Canfarotta F, Poma A, et al. Molecularly imprinted polymers for cell recognition[J]. Trends of Biotechnology, 2020, 38(4): 368-387. |
24 | Wang X L, Yao H F, Li X Y, et al. pH/temperature-sensitive hydrogel-based molecularly imprinted polymers (hydroMIPs) for drug delivery by frontal polymerization[J]. RSC Advances, 2016, 6(96): 94038-94047. |
25 | Tuwahatu C A, Yeung C C, Lam Y W, et al. The molecularly imprinted polymer essentials: curation of anticancer, ophthalmic, and projected gene therapy drug delivery systems[J]. Journal of Controlled Release: Official Journal of the Controlled Release Society, 2018, 287: 24-34. |
26 | Abdollahi E, Khalafi-Nezhad A, Mohammadi A, et al. Synthesis of new molecularly imprinted polymer via reversible addition fragmentation transfer polymerization as a drug delivery system[J]. Polymer, 2018, 143: 245-257. |
27 | Xu S, Lu H, Zheng X, et al. Stimuli-responsive molecularly imprinted polymers: versatile functional materials[J]. Journal of Materials Chemistry C, 2013, 1(29): 4406-4422. |
28 | Wu X, Wang X, Lu W, et al. Water-compatible temperature and magnetic dual-responsive molecularly imprinted polymers for recognition and extraction of bisphenol A[J]. Journal of Chromatography A, 2016, 1435: 30-38. |
29 | Wang J, Pan J, Yin Y, et al. Thermo-responsive and magnetic molecularly imprinted Fe3O4@carbon nanospheres for selective adsorption and controlled release of 2, 4, 5-trichlorophenol[J]. Journal of Industrial & Engineering Chemistry, 2015, 25: 321-328. |
30 | Zhu L, Cao Y, Ni X, et al. Facile and versatile strategy to prepare magnetic molecularly imprinted particles based on the coassembly of magnetic nanoparticles and amphiphilic random copolymers[J]. Journal of Separation Science, 2018, 41(2): 578-581. |
31 | Wu Y, Yan M, Lu J, et al. Facile bio-functionalized design of thermally responsive molecularly imprinted composite membrane for temperature-dependent recognition and separation applications[J]. Chemical Engineering Journal, 2017, 309: 98-107. |
32 | Hashemi-Moghaddam H, Maddah S. Coating of optical fiber with a smart thermosensitive polymer for the separation of phthalate esters by solid-phase microextraction[J]. Journal of Separation Science, 2018, 41(4): 886-892. |
33 | Liu X, Zhou T, Du Z, et al. Recognition ability of temperature responsive molecularly imprinted polymer hydrogels[J]. Soft Matter, 2011, 7(5): 1986-1993. |
34 | Zhang Y, Kuang M, Zhang L, et al. An accessible protocol for solid-phase extraction of N-linked glycopeptides through reductive amination by amine-functionalized magnetic nanoparticles[J]. Analytical Chemistry, 2013, 85(11): 5535-5541. |
35 | Shi S, Fan D, Xiang H, et al. Effective synthesis of magnetic porous molecularly imprinted polymers for efficient and selective extraction of cinnamic acid from apple juices[J]. Food Chemistry, 2017, 237: 198-204. |
[1] | Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf) [J]. CIESC Journal, 2023, 74(9): 3968-3978. |
[2] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[3] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[4] | Meibo XING, Zhongtian ZHANG, Dongliang JING, Hongfa ZHANG. Enhanced phase change energy storage/release properties by combining porous materials and water-based carbon nanotube under magnetic regulation [J]. CIESC Journal, 2023, 74(7): 3093-3102. |
[5] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[6] | Jie LIU, Lisheng WU, Jinjin LI, Zhenghong LUO, Yinning ZHOU. Preparation and properties of polyether-based vinylogous urethane reversible crosslinked polymers [J]. CIESC Journal, 2023, 74(7): 3051-3057. |
[7] | Qin YANG, Chuanjian QIN, Mingzi LI, Wenjing YANG, Weijie ZHAO, Hu LIU. Fabrication and properties of dual shape memory MXene based hydrogels for flexible sensor [J]. CIESC Journal, 2023, 74(6): 2699-2707. |
[8] | Yuanchao LIU, Xuhao JIANG, Ke SHAO, Yifan XU, Jianbin ZHONG, Zhuan LI. Influence of geometrical dimensions and defects on the thermal transport properties of graphyne nanoribbons [J]. CIESC Journal, 2023, 74(6): 2708-2716. |
[9] | Shaoyun CHEN, Dong XU, Long CHEN, Yu ZHANG, Yuanfang ZHANG, Qingliang YOU, Chenglong HU, Jian CHEN. Preparation and adsorption properties of monolayer polyaniline microsphere arrays [J]. CIESC Journal, 2023, 74(5): 2228-2238. |
[10] | Xuehong WU, Linlin LUAN, Yanan CHEN, Min ZHAO, Cai LYU, Yong LIU. Preparation and thermal properties of degradable flexible phase change films [J]. CIESC Journal, 2023, 74(4): 1818-1826. |
[11] | Haiqin LIU, Bowen LI, Zhe LING, Liang LIU, Juan YU, Yimin FAN, Qiang YONG. Facile preparation and properties of chemically modified galactomannan films via mild hydroxy-alkyne click reaction [J]. CIESC Journal, 2023, 74(3): 1370-1378. |
[12] | Dong XU, Du TIAN, Long CHEN, Yu ZHANG, Qingliang YOU, Chenglong HU, Shaoyun CHEN, Jian CHEN. Preparation and electrochemical energy storage of polyaniline/manganese dioxide/polypyrrole composite nanospheres [J]. CIESC Journal, 2023, 74(3): 1379-1389. |
[13] | Yue HU, Shoujun MA, Xigao JIAN, Zhihuan WENG. Study on curing phthalonitrile resin with novel poly(phthalazinone ether nitrile) [J]. CIESC Journal, 2023, 74(2): 871-882. |
[14] | Zhiyuan JIN, Guorong SHAN, Pengju PAN. Preparation and heat and salt resistance of AM/AMPS/SSS terpolymer [J]. CIESC Journal, 2023, 74(2): 916-923. |
[15] | Shaojie ZHENG, Jianbin WANG, Jijiang HU, Bo-Geng LI, Wenbo YUAN, Zong WANG, Zhen YAO. Regulation of structure and mechanical properties of poly(propylene-butene) alloys by monomer composition switching [J]. CIESC Journal, 2023, 74(2): 904-915. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||