CIESC Journal ›› 2020, Vol. 71 ›› Issue (9): 4270-4281.DOI: 10.11949/0438-1157.20200497
• Energy and environmental engineering • Previous Articles Next Articles
Haitao CHEN1(),Jinshuo QIAO1(),Zhenhuan WANG1,Wang SUN1,Haijun LI2,Kening SUN1
Received:
2020-05-06
Revised:
2020-06-15
Online:
2020-09-05
Published:
2020-09-05
Contact:
Jinshuo QIAO
陈海涛1(),乔金硕1(),王振华1,孙旺1,李海军2,孙克宁1
通讯作者:
乔金硕
作者简介:
陈海涛(1994—),男,硕士研究生,基金资助:
CLC Number:
Haitao CHEN, Jinshuo QIAO, Zhenhuan WANG, Wang SUN, Haijun LI, Kening SUN. Investigation on preparation and carbon catalytic ability of in-situ bimetallic nanoparticle YST composite anode[J]. CIESC Journal, 2020, 71(9): 4270-4281.
陈海涛, 乔金硕, 王振华, 孙旺, 李海军, 孙克宁. 原位双金属纳米颗粒YST复合阳极的构筑及其直接碳催化性能研究[J]. 化工学报, 2020, 71(9): 4270-4281.
Add to citation manager EndNote|Ris|BibTeX
Fig.2 XRD patterns for YST0.9-xCCox sample after calcination at 950℃ in air for 5 h: (a) 2θ from 20°to 80°, (b) 2θ from 32° to 33°. Rietveld-refined XRD pattern of the YST0.9-xCCox samples: (c) Co0 sample, (d) Co0.1 sample, (e) Co0.2sample, (f) Co0.3 sample. XRD patterns of YST0.9-xCCox sample calcined at 800℃ for 5 h in 10% H2 and 90% Ar atmosphere: (g) 2θ from 20° to 80°, (h) 2θ from 41° to 50°. (i) XRD patterns for YST0.9-xCCox sample mixed with carbon fuel at a mass ratio of 1∶1 and calcined at 800℃ for 5 h in Ar gas
阳极材料 | 空间群 | 晶胞参数 |
---|---|---|
Co0 | Pm | a=b=c=3.8990?,α=β=γ=90°,5.129 g·cm-3 |
Co0.1 | Pm | a=b=c=3.8988 ?,α=β=γ=90°,5.142 g·cm-3 |
Co0.2 | Pm | a=b=c=3.8887 ?,α=β=γ=90°,5.182 g·cm-3 |
Co0.3 | Pm | a=b=c=3.8820 ?,α=β=γ=90°,5.209 g·cm-3 |
Table 1 Summary of rietveld refinement results of XRD data for YST0.9-xCCox samples
阳极材料 | 空间群 | 晶胞参数 |
---|---|---|
Co0 | Pm | a=b=c=3.8990?,α=β=γ=90°,5.129 g·cm-3 |
Co0.1 | Pm | a=b=c=3.8988 ?,α=β=γ=90°,5.142 g·cm-3 |
Co0.2 | Pm | a=b=c=3.8887 ?,α=β=γ=90°,5.182 g·cm-3 |
Co0.3 | Pm | a=b=c=3.8820 ?,α=β=γ=90°,5.209 g·cm-3 |
Fig.3 (a) SEM image, TEM image and HRTEM image for Co0 sample calcined at 800℃ for 5 h in 10% H2 and 90% Ar atmosphere. SEM image for samples calcined at 800℃ for 5 h in 10% H2 and 90% Ar atmosphere: (b) Co0.1 sample, (c) Co0.2 sample, (d) Co0.3 sample. (e) EDS map, (f) TEM image, (g) and (h) HRTEM images for Co0.2 sample calcined at 800℃ for 5 h in 10% H2 and 90% Ar atmosphere
阳极材料 | Ti3+ 面积 | Ti4+ 面积 | Ti3+ 百分比/% | 晶格氧 面积 | 吸附氧 面积 | 吸附氧 百分比/% |
---|---|---|---|---|---|---|
Co0 | 5940.4 | 9627.1 | 38.16 | 155950 | 13737.4 | 46.83 |
Co0.1 | 6120.6 | 5145.8 | 54.33 | 11971.7 | 14410.1 | 54.62 |
Co0.2 | 5627.9 | 6005.1 | 48.38 | 10007.8 | 15004.0 | 59.99 |
Co0.3 | 6840.4 | 9327.0 | 42.31 | 10316.4 | 17691.3 | 63.17 |
Table 2 Ti3+ percentage and adsorbed oxygen percentage obtained by X-ray photoelectron spectra
阳极材料 | Ti3+ 面积 | Ti4+ 面积 | Ti3+ 百分比/% | 晶格氧 面积 | 吸附氧 面积 | 吸附氧 百分比/% |
---|---|---|---|---|---|---|
Co0 | 5940.4 | 9627.1 | 38.16 | 155950 | 13737.4 | 46.83 |
Co0.1 | 6120.6 | 5145.8 | 54.33 | 11971.7 | 14410.1 | 54.62 |
Co0.2 | 5627.9 | 6005.1 | 48.38 | 10007.8 | 15004.0 | 59.99 |
Co0.3 | 6840.4 | 9327.0 | 42.31 | 10316.4 | 17691.3 | 63.17 |
Fig.6 (a) EIS spectra of the symmetrical cells fabricated with YST0.9-xCCox samples at 800℃. (b) DRT analysis of the symmetrical cells fabricated with YST0.9-xCCox samples at 800℃
阳极材料 | Rp/(Ω·cm2) | RH/(Ω·cm2) | RL/(Ω·cm2) |
---|---|---|---|
Co0 | 5.32 | 1.07 | 4.25 |
Co0.1 | 4.56 | 0.83 | 3.73 |
Co0.2 | 1.63 | 0.67 | 0.96 |
Co0.3 | 3.19 | 0.31 | 2.68 |
Table 3 Results of resistances of the symmetrical cells fabricated with YST0.9-xCCox samples at 800℃
阳极材料 | Rp/(Ω·cm2) | RH/(Ω·cm2) | RL/(Ω·cm2) |
---|---|---|---|
Co0 | 5.32 | 1.07 | 4.25 |
Co0.1 | 4.56 | 0.83 | 3.73 |
Co0.2 | 1.63 | 0.67 | 0.96 |
Co0.3 | 3.19 | 0.31 | 2.68 |
Fig.7 Electrochemical performance of the single cells based on the LSCF cathode(a) I–V and I–P curves of the single cell with the Co0 and Co0.2 samples as anode at 800℃; (b) and (c) EIS spectra and the corresponding DRT analysis of single cell with the Co0 and Co0.2 samples as anode at 800℃ under open-circuit conditions; (d) Terminal voltages measured at 800℃ as a function of time for the cells with Co0 and Co0.2 samples as anode operated at a constant current density of 200 mA·cm-2
阳极材料 | RΩ/(Ω·cm2) | Rp /(Ω·cm2) | RH /(Ω·cm2) | RL /(Ω·cm2) |
---|---|---|---|---|
Co0 | 0.16 | 0.89 | 0.07 | 0.82 |
Co0.2 | 0.13 | 0.34 | 0.05 | 0.29 |
Table 4 Results of resistances of the single cells fabricated with Co0 and Co0.2 samples as anodes at 800℃
阳极材料 | RΩ/(Ω·cm2) | Rp /(Ω·cm2) | RH /(Ω·cm2) | RL /(Ω·cm2) |
---|---|---|---|---|
Co0 | 0.16 | 0.89 | 0.07 | 0.82 |
Co0.2 | 0.13 | 0.34 | 0.05 | 0.29 |
1 | Cherepy N J, Krueger R, Fiet K J, et al. Direct conversion of carbon fuels in a molten carbonate fuel cell[J]. Journal of The Electrochemical Society, 2005, 152(1): A80-A87. |
2 | Cao D, Sun Y, Wang G. Direct carbon fuel cell: fundamentals and recent developments[J]. Journal of Power Sources, 2007, 167(2): 250-257. |
3 | Liu Q, Tian Y, Xia C, et al. Modeling and simulation of a single direct carbon fuel cell[J]. Journal of Power Sources, 2008, 185(2): 1022-1029. |
4 | Liu J, Yuan H, Qiao J, et al. Hierarchical hollow nanofiber networks for high-performance hybrid direct carbon fuel cells[J]. Journal of Materials Chemistry A, 2017, 5 (33): 17216-17220. |
5 | Liu J, Qiao J, Yuan H, et al. Ni modified Ce(Mn, Fe)O2 cermet anode for high-performance direct carbon fuel cell[J]. Electrochimica Acta, 2017, 232: 174-181. |
6 | Sun K, Liu J, Feng J, et al. Investigation of B-site doped perovskites Sr2Fe1.4X0.1Mo0.5O6-δ (X=Bi, Al, Mg) as high-performance anodes for hybrid direct carbon fuel cell[J]. Journal of Power Sources, 2017, 365: 109-116. |
7 | Kaklidis N, Garagounis I, Kyriakou V, et al. Direct utilization of lignite coal in a Co-CeO2/YSZ/Ag solid oxide fuel cell[J]. International Journal of Hydrogen Energy, 2015, 40(41): 14353-14363. |
8 | Zhou W, Jiao Y, Li S D, et al. Anodes for carbon-fueled solid oxide fuel cells[J]. ChemElectroChem, 2016, 3(2): 193-203. |
9 | Sengodan S, Choi S, Jun A, et al. Layered oxygen deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells[J]. Nature Materials, 2015, 14(2): 205-209. |
10 | Atkinson A, Barnett S, Gorte R J, et al. Advanced anodes for high-temperature fuel cells[J]. Nature Materials, 2004, 3(1): 17-27. |
11 | Tao S, Irvine J T S. Discovery and characterization of novel oxide anodes for solid oxide fuel cells[J]. The Chemical Record, 2004, 4(2): 83-95. |
12 | Slater P R, Fagg D P, Irvine J T S. Synthesis and electrical characterisation of doped perovskite titanates as potential anode materials for solid oxide fuel cells[J]. Journal of Materials Chemistry, 1997, 7(12): 2495-2498. |
13 | Neagu D, Irvine J T S. Structure and properties of La0.4Sr0.4TiO3 ceramics for use as anode materials in solid oxide fuel cells[J]. Chemistry of Materials, 2010, 22(17): 5042-5053. |
14 | Périllat-Merceroz C, Gauthier G, Roussel P, et al. Synthesis and study of a Ce-doped La/Sr titanate for solid oxide fuel cell anode operating directly on methane[J]. Chemistry of Materials, 2011, 23(6): 1539-1550. |
15 | Kulkarni A, Giddey S, Badwal S P S, et al. Electrochemical performance of direct carbon fuel cells with titanate anodes[J]. Electrochimica Acta, 2014, 121: 34-43. |
16 | Huang X, Zhao H, Shen W, et al. Effect of fabrication parameters on the electrical conductivity of YxSr1-xTiO3 for anode materials[J]. Journal of Physics and Chemistry of Solids, 2006, 67(12): 2609-2613. |
17 | Li X, Zhao H, Shen W, et al. Synthesis and properties of Y-doped SrTiO3 as an anode material for SOFCs[J]. Journal of Power Sources, 2007, 166(1): 47-52. |
18 | Gao F, Zhao H, Li X, et al. Preparation and electrical properties of yttrium-doped strontium titanate with B-site deficiency[J]. Journal of Power Sources, 2008, 185(1): 26-31. |
19 | Jiang S P. Nanoscale and nano-structured electrodes of solid oxide fuel cells by infiltration: advances and challenges[J]. International Journal of Hydrogen Energy, 2012, 37(1): 449-470. |
20 | Chen K, Ai N, Lievens C, et al. Impact of volatile boron species on the microstructure and performance of nano-structured (Gd, Ce)O2 infiltrated (La, Sr)MnO3 cathodes of solid oxide fuel cells[J]. Electrochemistry Communications, 2012, 23(Complete): 129-132. |
21 | Kobsiriphat W, Madsen B D, Wang Y, et al. La0.8Sr0.2Cr1-xRuxO3-δ-Gd0.1Ce0.9O1.95 solid oxide fuel cell anodes: Ru precipitation and electrochemical performance[J]. Solid State Ionics, 2009, 180(2/3): 257-264. |
22 | Madsen B D, Kobsiriphat W, Wang Y, et al. Nucleation of nanometer-scale electrocatalyst particles in solid oxide fuel cell anodes[J]. Journal of Power Sources, 2007, 166(1): 64-67. |
23 | Kobsiriphat W, Madsen B D, Wang Y, et al. Nickel- and ruthenium-doped lanthanum chromite anodes: effects of nanoscale metal precipitation on solid oxide fuel cell performance[J]. Journal of the Electrochemical Society, 2010, 157(2): B279-B284. |
24 | Neagu D, Oh T S, Miller D N, et al. Nano-socketed nickel particles with enhanced coking resistance grown in situ by redox exsolution[J]. Nature Communications, 2015, 6: 8120. |
25 | Zhou N, Yin Y M, Chen Z H, et al. A regenerative coking and sulfur resistant composite anode with Cu exsolution for intermediate temperature solid oxide fuel cells[J]. Journal of the Electrochemical Society, 2018, 165(9): F629-F634. |
26 | Yang C, Yang Z, Jin C, et al. Sulfur-tolerant redox-reversible anode material for direct hydrocarbon solid oxide fuel cells[J]. Advanced Materials, 2012, 24(11): 1439-1443. |
27 | Zheng M, Wang S, Li M, et al. H2 and CO oxidation process at the three-phase boundary of Cu-ceria cermet anode for solid oxide fuel cell[J]. Journal of Power Sources, 2017, 345: 165-175. |
28 | Lu X C, Zhu J H. Cu(Pd)-impregnated La0.75Sr0.25Cr0.5Mn0.5O3-δ anodes for direct utilization of methane in SOFC[J]. Solid State Ionics, 2007, 178(25): 1467-1475. |
29 | Cui S H, Li J H, Zhou X W, et al. Cobalt doped LaSrTiO3-δ as an anode catalyst: effect of Co nanoparticle precipitation on SOFCs operating on H2S-containing hydrogen[J]. Journal of Materials Chemistry-A, 2013, 1(34): 9689-9696. |
30 | Adijanto L, Padmanabhan V B, Gorte R J, et al. Polarization-induced hysteresis in CuCo-doped rare earth vanadates SOFC anodes[J]. Journal of The Electrochemical Society, 2012, 159(11): F751-F756. |
31 | Singh S, Jha P A, Presto S, et al. Structural and electrical conduction behaviour of yttrium doped strontium titanate: anode material for SOFC application[J]. Journal of Alloys and Compounds, 2018, 748(5): 637-644. |
32 | Kumar P, Presto S, Sinha A S K, et al. Effect of samarium (Sm3+) doping on structure and electrical conductivity of double perovskite Sr2NiMoO6 as anode material for SOFC[J]. Journal of Alloys and Compounds, 2017, 725: 1123-1129. |
33 | Vutetakis D G, Skidmore D R, Byker H J. Electrochemical oxidation of molten carbonate-coal slurries[J]. Journal of The Electrochemical Society, 1987, 134(12): 3027-3035. |
34 | Jiang C, Irvine J T S. Catalysis and oxidation of carbon in a hybrid direct carbon fuel cell[J]. Journal of Power Sources, 2011, 196(17): 7318-7322. |
35 | Nabae Y, Pointon K D, Irvine J T S. Electrochemical oxidation of solid carbon in hybrid DCFC with solid oxide and molten carbonate binary electrolyte[J]. Energy & Environmental Science, 2008, 1(1): 148-155. |
[1] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[2] | Rubin ZENG, Zhongjie SHEN, Qinfeng LIANG, Jianliang XU, Zhenghua DAI, Haifeng LIU. Study of the sintering mechanism of Fe2O3 nanoparticles based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3353-3365. |
[3] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[4] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[5] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[6] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[7] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[8] | Yong LI, Jiaqi GAO, Chao DU, Yali ZHAO, Boqiong LI, Qianqian SHEN, Husheng JIA, Jinbo XUE. Construction of Ni@C@TiO2 core-shell dual-heterojunctions for advanced photo-thermal catalytic hydrogen generation [J]. CIESC Journal, 2023, 74(6): 2458-2467. |
[9] | Juhui CHEN, Qian ZHANG, Lingfeng SHU, Dan LI, Xin XU, Xiaogang LIU, Chenxi ZHAO, Xifeng CAO. Study on flow characteristics of nanoparticles in a rotating fluidized bed based on DEM method [J]. CIESC Journal, 2023, 74(6): 2374-2381. |
[10] | Chengze WANG, Kaili GU, Jinhua ZHANG, Jianxuan SHI, Yiwei LIU, Jinxiang LI. Sulfidation couples with aging to enhance the reactivity of zerovalent iron toward Cr(Ⅵ) in water [J]. CIESC Journal, 2023, 74(5): 2197-2206. |
[11] | Xu GUO, Yongzheng ZHANG, Houbing XIA, Na YANG, Zhenzhen ZHU, Jingyao QI. Research progress in the removal of water pollutants by carbon-based materials via electrooxidation [J]. CIESC Journal, 2023, 74(5): 1862-1874. |
[12] | Zheng ZHANG, Yongping HE, Haidong SUN, Rongzi ZHANG, Zhengping SUN, Jinlan CHEN, Yixuan ZHENG, Xiao DU, Xiaogang HAO. Electrochemically switched ion exchange device with serpentine flow field for selective extraction of lithium [J]. CIESC Journal, 2023, 74(5): 2022-2033. |
[13] | Ruikang LI, Yingying HE, Weipeng LU, Yuanyuan WANG, Haodong DING, Yongming LUO. Study on the electrochemical enhanced cobalt-based cathode to activate peroxymonosulfate [J]. CIESC Journal, 2023, 74(5): 2207-2216. |
[14] | Laiming LUO, Jin ZHANG, Zhibin GUO, Haining WANG, Shanfu LU, Yan XIANG. Simulation and experiment of high temperature polymer electrolyte membrane fuel cells stack in the 1—5 kW range [J]. CIESC Journal, 2023, 74(4): 1724-1734. |
[15] | Ruiqi LIU, Xitong ZHOU, Yue ZHANG, Ying HE, Jing GAO, Li MA. The construction and application of biosensor based on gold nanoparticles loaded SiO2-nanoflowers [J]. CIESC Journal, 2023, 74(3): 1247-1259. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||