CIESC Journal ›› 2020, Vol. 71 ›› Issue (12): 5620-5627.DOI: 10.11949/0438-1157.20200535
• Separation engineering • Previous Articles Next Articles
LIU Yingshu1(),SUN Ningqi1,LI Ziyi1(),YANG Xiong1,WEI Jinchao2,YANG Bentao2,WU Qianqian1,LIU Jiaxin1
Received:
2020-05-08
Revised:
2020-07-19
Online:
2020-12-05
Published:
2020-12-05
Contact:
LI Ziyi
刘应书1(),孙宁起1,李子宜1(),杨雄1,魏进超2,杨本涛2,吴倩倩1,刘佳欣1
通讯作者:
李子宜
作者简介:
刘应书(1960—),男,博士,教授,基金资助:
CLC Number:
LIU Yingshu,SUN Ningqi,LI Ziyi,YANG Xiong,WEI Jinchao,YANG Bentao,WU Qianqian,LIU Jiaxin. Influence of process parameters of condensation on the recovery of SO2 in desorption gas from flue gas adsorption desulfurization[J]. CIESC Journal, 2020, 71(12): 5620-5627.
刘应书,孙宁起,李子宜,杨雄,魏进超,杨本涛,吴倩倩,刘佳欣. 冷凝法回收烟气吸附脱硫解吸气中SO2工艺参数的影响规律研究[J]. 化工学报, 2020, 71(12): 5620-5627.
Add to citation manager EndNote|Ris|BibTeX
温度/K | A | B | C |
---|---|---|---|
177.7~263.0 | 3.48586 | 668.225 | -72.252 |
263.0~414.9 | 4.37798 | 966.575 | -42.071 |
Table 1 Antoine equation parameters for calculating the saturated vapor pressure of SO2[23-24]
温度/K | A | B | C |
---|---|---|---|
177.7~263.0 | 3.48586 | 668.225 | -72.252 |
263.0~414.9 | 4.37798 | 966.575 | -42.071 |
温度/℃ | 压力/MPa | |||||||
---|---|---|---|---|---|---|---|---|
0.8 | 0.9 | 1.0 | 1.1 | 1.2 | 1.3 | 1.4 | 1.5 | |
-35 | 8.13% | 8.62% | 7.56% | 7.65% | 7.61% | 7.12% | 7.17% | 7.32% |
-41 | 8.98% | 9.05% | 9.07% | 8.93% | 9.05% | 9.94% | 9.01% | 8.97% |
Table 2 SO2 concentrations in the source gases at different temperatures and pressures
温度/℃ | 压力/MPa | |||||||
---|---|---|---|---|---|---|---|---|
0.8 | 0.9 | 1.0 | 1.1 | 1.2 | 1.3 | 1.4 | 1.5 | |
-35 | 8.13% | 8.62% | 7.56% | 7.65% | 7.61% | 7.12% | 7.17% | 7.32% |
-41 | 8.98% | 9.05% | 9.07% | 8.93% | 9.05% | 9.94% | 9.01% | 8.97% |
1 | Li C, Mclinden C, Fioletov V, et al. India is overtaking China as the worlds largest emitter of anthropogenic sulfur dioxide[J]. Scientific Reports, 2017, 7(1): 1-7. |
2 | Yang X, Zhang W, Fan J, et al. The temporal variation of SO2 emissions embodied in Chinese supply chains, 2002—2012[J]. Environmental Pollution, 2018, 241(2018): 172-181. |
3 | 唐强, 曹子栋, 王盛, 等. 活性炭吸附法脱硫实验研究和工业性应用[J]. 现代化工, 2003, 23(3): 37-40. |
Tang Q, Cao Z D, Wang S, et al. Experimental study on removal of SO2 over granular activated carbon and its industrial-scale application[J]. Modern Chemical Industry, 2003, 23(3): 37-40. | |
4 | 刘静, 翟尚鹏, 岑祖望, 等. 活性焦吸附法硫酸尾气脱硫装置的设计与运行[J]. 硫酸工业, 2010, (3): 28-31. |
Liu J, Zhai S P, Cen Z W, et al. Design and operation of sulphuric acid tail gas desulphurization plant using active coke adsorption process[J]. Sulphuric Acid Industry, 2010, (3): 28-31. | |
5 | 张力, 刘伟. 活性炭吸附烟气脱硫的展望[J]. 辽宁化工, 1996, (5): 16-18. |
Zhang L, Liu W. Prospect of flue gas desulfurization by activated carbon adsorption[J]. Liaoning Chemical Industry, 1996, (5): 16-18. | |
6 | 段丽. 活性炭吸附法联合脱硫脱硝技术分析[J]. 云南电力技术, 2009, 37(4): 58-59. |
Duan L. Analysis of activated carbon adsorption combined with desulfurization and denitration[J]. Yunnan Electric Power, 2009, 37(4): 58-59. | |
7 | 高泽磊, 邵志超, 王政, 等. 活性焦脱硫系统低耗能解吸技术研究及应用[J]. 硫酸工业, 2017, (10): 38-40. |
Gao Z L, Shao Z C, Wang Z, et al. Research and application of low power consumption active coke desorption technology in desulphurization system[J]. Sulphuric Acid Industry, 2017, (10): 38-40. | |
8 | Olson D G, Tsuji K, Shiraishi I. The reduction of gas phase air toxics from combustion and incineration sources using the MET-Mitsui-BF activated coke process[J]. Fuel Processing Technology, 2000, 65: 393-405. |
9 | Tsuji K, Shiraishi I. Combined desulfurization, denitrification and reduction of air toxics using activated coke(1): Activity of activated coke[J]. Fuel, 1997, 76(6): 549-553. |
10 | 中商产业研究院. 中国二氧化硫行业市场前景及投资策略研究报告(2016~2021年)[R]. 深圳: 中商产业研究院, 2016. |
China Business Industry Research Institute. China sulfur dioxide industry market prospects and investment strategy research report (2016—2021)[R]. Shenzhen: China Business Industry Research Institute, 2016. | |
11 | Emmett E J, Willis M C. The development and application of sulfur dioxide surrogates in synthetic organic chemistry[J]. Asian J. Org. Chem., 2015, 4(7): 602-611. |
12 | 任翔宇, 金奇超, 袁伊娟. 活性炭-冷凝回收治理有机废气工程应用研究[J]. 环境与发展, 2019, 31(8): 86-87. |
Ren X Y, Jin Q C, Yuan Y J. Study on the application of activated carbon-condensate recovery in the treatment of organic waste gas engineering[J]. Environment Development, 2019, 31(8): 86-87. | |
13 | 陆晓春, 宋娟, 孔德香, 等. 二氯甲烷废气净化与冷凝回收量的计算[J]. 南昌大学学报(工科版), 2019, 41(3): 228-233. |
Lu X C, Song J, Kong D X, et al. Purification and calculation of condensation recovery quantity from waste gas flow containing dichloromethane[J]. Journal of Nanchang University (Engineering & Technology), 2019, 41(3): 228-233. | |
14 | 甘露, 徐绯然, 田波, 等. 某航天发射场四氧化二氮废气冷凝回收方法设计[C]//第十三届全国信号和智能信息处理与应用学术会议. 北京: 中国高科技产业化研究会, 2019: 215-219. |
Gan L, Xu F R, Tian B, et al. Design of the method of condensing and reclaiming N2O4 exhaust[C]// Proceedings of the 13th National Conference on Signal and Intelligent Information Processing and Application. Beijing: China High-tech Industrialization Research Association, 2019: 215-219. | |
15 | Zhang L, Hou Z, Huang L, et al. Simulation and practice of condensation recovery of nitrogen tetroxide based on HYSYS[C]//IOP Conference Series: Earth and Environmental Science. Shanghai: IOP Publishing Ltd., 2019, 281(1): 012003. |
16 | 彭万旺, 王乃计, 戢绪国, 等. 气流床烟气干法脱硫技术的初步试验研究[J]. 洁净煤技术, 1999, (4): 22-26. |
Peng W W, Wang N J, Ji X G, et al. Primary test results of dry flue gas desulfurization with entrained bed[J]. Clean Coal Technology, 1999, (4): 22-26. | |
17 | 彭万旺, 王乃计. 烟气脱硫再生尾气中二氧化硫的液化分离[J]. 煤气与热力, 2000, (2): 3-7. |
Peng W W, Wang N J. Basic analysis for recovery of liquid SO2 from regeneration tail gas of flue gas desulfurization[J]. Gas & Heat, 2000, (2): 3-7. | |
18 | 杨化震. 二氧化硫烟气深冷液化分离工艺实验及模拟研究[D]. 淄博: 山东理工大学, 2019. |
Yang H Z. Experiments and simulations of cryogenic sulfur dioxide flue gas desulfurization process[D]. Zibo: Shandong University of Technology, 2019. | |
19 | 卢建光, 阎占海, 邵久刚, 等. 逆流式活性炭净化烟气工艺在邯钢烧结机的应用[J]. 中国钢铁业, 2019, (3): 52-54. |
Lu J G, Yan Z H, Shao J G, et al. Application of countercurrent activated carbon purification technology in sintering machine of Handan steel [J]. China Steel, 2019, (3): 52-54. | |
20 | 韩健, 阎占海, 邵久刚. 逆流式活性炭烟气脱硫脱硝技术特点及应用[J]. 烧结球团, 2018, 43(6): 13-18. |
Han J, Yan Z H, Shao J G. Technical characteristics of counter flow active carbon-flue gas desulphurization and denitrification process and its application[J]. Sintering and Pelletizing, 2018, 43(6): 13-18. | |
21 | Grebenev I V, Lebedeva O V, Polushkina S V. A demonstration experiment for studying the properties of saturated vapor[J]. Physics Education, 2017, 52(6): 063001. |
22 | Roedel W. The sulfuric acid saturation vapor pressure: measurement and implications for aerosol condensation[J]. Pergamon, 1980, 11(3): 267-268. |
23 | National Institute of Standards and Technology. Sulfur dioxide: phase change data[DB/OL]. [2020-04-29]. https://webbook.nist.gov/cgi/cbook.cgi?ID=C7446095&Units=SI&Mask=4#Thermo-Phase. |
24 | Stull D R. Vapor pressure of pure substances: organic and inorganic compounds[J]. Ind. Eng. Chem., 1947, 39(4): 517-540. |
25 | 沈维道. 能源技术基础理论讲座——应用传热学[J]. 能源技术, 1988, (3): 48-53+46. |
Shen W D. Lectures on basic theories of energy technology: applied heat transfer[J]. Energy Technology, 1988, (3): 48-53+46. | |
26 | Huang J, Zhang J, Wang L. Review of vapor condensation heat and mass transfer in the presence of non-condensable gas[J]. Appl. Therm. Eng., 2015, 89: 469-484. |
27 | Al-Shammari S B, Webb D R, Heggs P. Condensation of steam with and without the presence of non-condensable gases in a vertical tube[J]. Desalination, 2003, 169(2): 151-160. |
28 | Knacke O, Stranski I N. The mechanism of evaporation[J]. Prog. Met. Phys., 1956, (6): 181-235. |
29 | Collier J G, Thome J R. Convective Boiling and Condensation[M]. London: Clarendon Press, 1994: 430-434. |
30 | Ge M, Zhao J, Wang S. Experimental investigation of steam condensation with high concentration CO2 on a horizontal tube[J]. Applied Thermal Engineering, 2013, 61(2): 334-343. |
[1] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[2] | Wei SU, Dongxu MA, Xu JIN, Zhongyan LIU, Xiaosong ZHANG. Visual experimental study on effect of surface wettability on frost propagation characteristics [J]. CIESC Journal, 2023, 74(S1): 122-131. |
[3] | Yaxin ZHAO, Xueqin ZHANG, Rongzhu WANG, Guo SUN, Shanjing YAO, Dongqiang LIN. Removal of monoclonal antibody aggregates with ion exchange chromatography by flow-through mode [J]. CIESC Journal, 2023, 74(9): 3879-3887. |
[4] | Jiayi ZHANG, Jiali HE, Jiangpeng XIE, Jian WANG, Yu ZHAO, Dongqiang ZHANG. Research progress of pervaporation technology for N-methylpyrrolidone recovery in lithium battery production [J]. CIESC Journal, 2023, 74(8): 3203-3215. |
[5] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[6] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[7] | Shuang LIU, Linzhou ZHANG, Zhiming XU, Suoqi ZHAO. Study on molecular level composition correlation of viscosity of residual oil and its components [J]. CIESC Journal, 2023, 74(8): 3226-3241. |
[8] | Yuanliang ZHANG, Xinqi LUAN, Weige SU, Changhao LI, Zhongxing ZHAO, Liqin ZHOU, Jianmin CHEN, Yan HUANG, Zhenxia ZHAO. Study on selective extraction of nicotine by ionic liquids composite extractant and DFT calculation [J]. CIESC Journal, 2023, 74(7): 2947-2956. |
[9] | Jinming GAO, Yujiao GUO, Chenglin E, Chunxi LU. Study on the separation characteristics of a downstream gas-liquid vortex separator in a closed hood [J]. CIESC Journal, 2023, 74(7): 2957-2966. |
[10] | Ben ZHANG, Songbai WANG, Ziya WEI, Tingting HAO, Xuehu MA, Rongfu WEN. Capillary liquid film condensation and heat transfer enhancement driven by superhydrophilic porous metal structure [J]. CIESC Journal, 2023, 74(7): 2824-2835. |
[11] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[12] | Kuikui HAN, Xianglong TAN, Jinzhi LI, Ting YANG, Chun ZHANG, Yongfen ZHANG, Hongquan LIU, Zhongwei YU, Xuehong GU. Four-channel hollow fiber MFI zeolite membrane for the separation of xylene isomers [J]. CIESC Journal, 2023, 74(6): 2468-2476. |
[13] | Xingchi ZHU, Zhiyuan GUO, Zhiyong JI, Jing WANG, Panpan ZHANG, Jie LIU, Yingying ZHAO, Junsheng YUAN. Simulation and optimization of selective electrodialysis magnesium and lithium separation process [J]. CIESC Journal, 2023, 74(6): 2477-2485. |
[14] | Lei WANG, Lei WANG, Yunlong BAI, Liuliu HE. Preparation of SA lithium ion sieve membrane and its adsorptive properties [J]. CIESC Journal, 2023, 74(5): 2046-2056. |
[15] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||