CIESC Journal ›› 2021, Vol. 72 ›› Issue (2): 886-900.DOI: 10.11949/0438-1157.20200733
• Reviews and monographs • Previous Articles Next Articles
YING Yuxuan(),LIN Xiaoqing,WU Angjian,LI Xiaodong()
Received:
2020-06-09
Revised:
2020-07-22
Online:
2021-02-05
Published:
2021-02-05
Contact:
LI Xiaodong
通讯作者:
李晓东
作者简介:
应雨轩(1997—),男,博士研究生,基金资助:
CLC Number:
YING Yuxuan, LIN Xiaoqing, WU Angjian, LI Xiaodong. Review and outlook on municipal solid waste smart incineration[J]. CIESC Journal, 2021, 72(2): 886-900.
应雨轩, 林晓青, 吴昂键, 李晓东. 生活垃圾智慧焚烧的研究现状及展望[J]. 化工学报, 2021, 72(2): 886-900.
Add to citation manager EndNote|Ris|BibTeX
1 | 中华人民共和国国家统计局. 中国统计年鉴 [M]. 北京: 中国统计出版社, 2019. |
National Bureau of Statistics of China. China Statistical Yearbook [M]. Beijing: China Statistics Press, 2019. | |
2 | Schwarzböck T, Rechberger H, Cencic O, et al. Determining national greenhouse gas emissions from waste-to-energy using the balance method [J]. Waste Management, 2016, (49): 263-271. |
3 | Yan M, Agamuthu P, Waluyo J. Challenges for sustainable development of waste to energy in developing countries [J]. Waste Management & Research, 2020, 38(3): 229-231, |
4 | 黄哲程. 垃圾焚烧发电明年执行新规将公开常规污染物排放数据 [N]. 新京报, 2019-12-15(1). |
Huang Z C. New regulations will be implemented next year that will make data on conventional pollutant emissions public [N]. The Beijing News, 2019-12-15(1). | |
5 | 朱峰. 新乡: 变废为宝 我市将建成全国首个智慧型垃圾焚烧发电厂 [N]. 新乡新闻网, 2019-10-20(1). |
Zhu F. Xinxiang city: The city will build the China's first intelligent waste incineration power plant [N]. The Xinxiang News, 2019-10-20(1). | |
6 | Sugeno M, Kang G T. Fuzzy modelling and control of multilayer incinerator [J]. Fuzzy Sets Systems, 1986, 18(3): 329-345. |
7 | Jager J, Logf A. Model development and intelligent control systems in environmental engineering shown for the example of waste incineration; Modellbildung und intelligente Steuerungssysteme in der Umwelttechnik-am Beispiel der Muellverbrennung [M]. Germany, 1993. |
8 | 钱大群, 孙振飞. 一个垃圾焚烧智能控制系统 [J]. 信息与控制, 1993, (6): 374-377. |
Qian D Q, Sun Z F. The intelligent control system of waste incineration [J]. Information and Control, 1993, (6): 374-377. | |
9 | Miyamoto Y, Kurosaki Y, Fujiyama H, et al. Dynamic characteristic analysis and combustion control for a fluidized bed incinerator [J]. Control Engineering Practice, 1998, 6(9): 1159-1168. |
10 | 杜树新, 吴铁军. 环境控制自动化——控制理论新的应用领域 [J]. 化工自动化及仪表, 2003, (2): 1-9. |
Du S X, Wu T J. Environmental automatic control—promising applications of control theory [J]. Control and Instruments in Chemical Industry, 2003, (2): 1-9. | |
11 | 徐宏. 城市垃圾焚烧发电的控制策略[J]. 能源工程, 2005, (5): 38-41. |
Xu H. Control strategy of municipal refuse incineration power [J]. Energy Engineering, 2005, (5): 38-41. | |
12 | Pardini K, Rodrigues J J P C, Kozlov S A, et al. IoT-based solid waste management solutions: a survey [J]. Journal of Sensor Actuator Networks, 2019, 8(1): 5. |
13 | Wu M, Lu T J, Ling F Y, et al. Research on the architecture of internet of things[C]//Proceedings of the 2010 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE). IEEE, 2010. |
14 | Yang Z, Yue Y, Yang Y, et al. Study and application on the architecture and key technologies for IOT [C]// Proceedings of the 2011 International Conference on Multimedia Technology. IEEE, 2011. |
15 | Khan R, Khan S U, Zaheer R, et al. Future internet: the internet of things architecture, possible applications and key challenges[C]//Proceedings of the 2012 10th International Conference on Frontiers of Information Technology. IEEE, 2012. |
16 | Chaqfeh M A, Mohamed N. Challenges in middleware solutions for the internet of things[C]//Proceedings of the 2012 International Conference on Collaboration Technologies and Systems (CTS). IEEE, 2012. |
17 | Atzori L, Iera A, Morabito G. The internet of things: a survey [J]. Computer Networks, 2010, 54(15): 2787-2805. |
18 | Shyam G K, Manvi S S, Bharti P. Smart waste management using Internet-of-Things (IoT) [C]//Proceedings of the 2017 2nd International Conference on Computing and Communications Technologies (ICCCT). IEEE, 2017. |
19 | Shyam G K, Manvi S S. Virtual resource prediction in cloud environment: a Bayesian approach [J]. Journal of Network Computer Applications, 2016, (65): 144-154. |
20 | Singh G K, Gupta K, Chaudhary S. Solid waste management: its sources, collection, transportation and recycling [J]. International Journal of Environmental Science Development, 2014, 5(4): 347. |
21 | Ochoa-Zezzatti C A, Rudomin I, Vargas Solar G, et al. Humanitarian logistics and cultural diversity within crowd simulation [J]. Computación y Sistemas, 2017, 21(1): 7-21. |
22 | 周冯琦, 张文博. 垃圾分类领域人工智能应用的特征及其优化路径研究 [J]. 新疆师范大学学报(哲学社会科学版), 2020, (4): 1-10. |
Zhou F Q, Zhang W B. Research on the characteristics and optimization of artificial intelligence application and its optimization path in waste classification [J]. Journal of Xinjiang Normal University (Philosophy and Social Sciences), 2020, (4): 1-10 | |
23 | Fang W, Li Y, Zhang H J, et al. On the throughput-energy tradeoff for data transmission between cloud and mobile devices [J]. Information Sciences, 2014, (283): 79-93. |
24 | Manvi S S, Shyam G K. Resource management for infrastructure as a service (IaaS) in cloud computing: a survey [J]. Journal of Network Computer Applications, 2014, (41): 424-440. |
25 | Balamurugan S, Ajithx A, Ratnakaran S, et al. Design of smart waste management system[C]// Proceedings of the 2017 International Conference on Microelectronic Devices, Circuits and Systems (ICMDCS). IEEE, 2017. |
26 | Jones F C, Blomqvist E W, Bisaillon M, et al. Determination of fossil carbon content in Swedish waste fuel by four different methods [J]. Waste Management Research, 2013, 31(10): 1052-1061. |
27 | Muir G, Hayward S, Wilkinson M, et al. Determining the biomass fraction of mixed waste fuels: a comparison of existing industry and 14C-based methodologies [J]. Waste Management, 2015, (35): 293-300. |
28 | Mohn J, Szidat S, Emmenegger L, et al. Determination of biogenic and fossil CO2 emitted by waste incineration based on 14CO2 and mass balances [J]. Bioresource Technology, 2008, 99(14): 6471-6479. |
29 | Schwarzböck T, Aschenbrenner P, Fellner J, et al. An alternative method to determine the share of fossil carbon in solid refuse-derived fuels—validation and comparison with three standardized methods [J]. Fuel, 2018, (220): 916-930. |
30 | Fellner J, Cencic O, Rechberger H. A new method to determine the ratio of electricity production from fossil and biogenic sources in waste-to-energy plants [J]. Environmental Science Technology, 2007, 41(7): 2579-2586. |
31 | Obermoser M, Fellner J, Rechberger H. Determination of reliable CO2 emission factors for waste-to-energy plants [J]. Waste Management Research, 2009, 27(9): 907-913. |
32 | Tian W, Wei X, Wu D, et al. Analysis of ingredient and heating value of municipal solid waste [J]. Journal of Environmental Sciences(China), 2001, (1): 87-91. |
33 | 谢承利, 陆继东, 沈凯, 等. 基于焚烧运行参数的垃圾热值软测量模型 [J]. 燃烧科学与技术, 2007, (1): 81-85. |
Xie C L, Lu J D, Shen K, et al. Indirect measurement model for waste heating value based on incineration operational parameters [J]. Journal of Combustion Science and Technology, 2007, (1): 81-85. | |
34 | 陈海列, 许力, 许润. 一种基于深度递归网络的垃圾热值预测方法 [J]. 工业控制计算机, 2018, 31(12): 80-81+4. |
Chen H L, Xu L, Xu R. Predicting litter calorific value by using deep recursive networks [J]. Industrial Control Computer, 2018, 31(12): 80-81+4. | |
35 | 马晓茜, 谢泽琼. 基于BP神经网络的垃圾热值预测模型 [J]. 科技导报, 2012, 30(23): 46-50. |
Ma X Q, Xie Z Q. Prediction models for the heating values of municipal refuse based on BP neural network [J]. Science & Technology Review, 2012, 30(23): 46-50. | |
36 | 曾卫东, 田爽, 袁亚辉, 等. 垃圾焚烧炉自动燃烧控制系统设计与实现 [J]. 热力发电, 2019, 48(3): 109-113. |
Zeng W D, Tian S, Yuan Y H, et al. Design and implementation of ACC system for waste incinerator [J]. Thermal Power Generation, 2019, 48(3): 109-113. | |
37 | 曾卫东, 田爽, 王傲寒. 垃圾池焚烧一体智能化模型建立与实证分析 [J]. 热力发电, 2019, (9): 125-128. |
Zeng W D, Tian S, Wang A H. Establishment and research of intelligent model for waste tank incineration [J]. Thermal Power Generation, 2019, (9): 125-128. | |
38 | Allegrini E, Maresca A, Olsson M E, et al. Quantification of the resource recovery potential of municipal solid waste incineration bottom ashes [J]. Waste Management, 2014, 34(9): 1627-1636. |
39 | Trinkel V, Kieberger N, Fellner J, et al. Influence of waste plastic utilisation in blast furnace on heavy metal emissions [J]. Journal of Cleaner Production, 2015, (94): 312-320. |
40 | Chen J C, Lin K Y. Diagnosis for monitoring system of municipal solid waste incineration plant [J]. Expert Systems with Applications, 2008, 34(1): 247-255. |
41 | 周志成. 基于图像处理和人工智能的垃圾焚烧炉燃烧状态诊断研究 [D]. 南京: 东南大学, 2015. |
Zhou Z C. Study on diagnosis of combustion state in refuse incinerator based on digital image processing and artificial intelligence [D]. Nanjing: Southeast University, 2015. | |
42 | Zhou H C, Han S D, Sheng F, et al. Visualization of three-dimensional temperature distributions in a large-scale furnace via regularized reconstruction from radiative energy images: numerical studies [J]. Journal of Quantitative Spectroscopy Radiative Transfer, 2002, 72(4): 361-383. |
43 | 薛祯祯. 基于可见光辐射的垃圾焚烧炉火焰温度检测与燃烧诊断 [D]. 徐州: 中国矿业大学, 2016. |
Xue Z Z. Combustion diagnostics and measurement of flame temperature in MSW incinerator based on visible radiation [D]. Xuzhou: China University of Mining and Technology, 2016. | |
44 | Levent D F, Pei J, Saraswat K C. In situ acoustic temperature tomography of semiconductor wafers [J]. Applied Physics Letters, 1994, 64(11): 1338-1340. |
45 | Shen G, An L, Jiang G, et al. Real-time monitoring on boiler combustion based on acoustic measurement [C]// Proceedings of the 2006 IEEE Power India Conference. IEEE, 2006. |
46 | Zhang S, Shen G, An L, et al. Online monitoring of the two-dimensional temperature field in a boiler furnace based on acoustic computed tomography [J]. Applied Thermal Engineering, 2015, (75): 958-966. |
47 | Śladewski Ł, Wojdan K, Chachuła J, et al. Optimization of combustion process in coal-fired power plant with utilization of acoustic system for in-furnace temperature measurement [J]. Applied Thermal Engineering, 2017, (123): 711-720. |
48 | 孙成永, 尚江伟. 垃圾焚烧厂炉膛温度监测技术探讨 [J]. 环境与发展, 2019, 31(9): 138-140. |
Sun C Y, Shang J W. Discussion on furnace temperature monitoring technology in refuse incinerator [J]. Environment and Development, 2019, 31(9): 138-140. | |
49 | Onishi K. Fuzzy control of municipal refuse incineration plant [J]. Automatic Measurement Control Society, 1991, 27(3): 326-332. |
50 | Shen K, Lu J, Li Z, et al. An adaptive fuzzy approach for the incineration temperature control process [J]. Fuel, 2005, 84(9): 1144-1150. |
51 | 胡兴武. 垃圾焚烧发电厂燃烧智能控制系统的研究 [D]. 北京: 华北电力大学, 2011. |
Hu X W. Study on intelligent control system of burning in waste incineration power plant [D]. Beijing: North China Electric Power University, 2011. | |
52 | Ni Y M, Li L. Garbage incineration and intelligent fusion strategy of secondary pollution control[C]// Proceedings of the Advanced Materials Research. Trans. Tech. Publ., 2014. |
53 | Wu Q, Xu H. Intelligent control strategy of incineration process pollution in municipal solid waste[C]// Proceedings of the International Conference on Oriental Thinking and Fuzzy Logic. Springer, 2016. |
54 | 肖前军, 许虎. 生活垃圾焚烧炉燃烧过程温度的仿人智能控制 [J]. 智能系统学报, 2015, 10(6): 881-885. |
Xiao Q J, Xu H. Algorithm for human-simulated intelligent temperature control of incinerator combustion process of urban household garbage [J]. CAAI Transactions on Intelligent Systems, 2015, 10(6): 881-885. | |
55 | 巫茜. 采用PSO改进的智能算法在焚烧污染控制中的应用 [J]. 重庆理工大学学报(自然科学), 2018, 32(12): 133-138. |
Wu Q. Application study of PSO improving based intelligent algorithm in incineration polution control[J]. Journal of Chongqing University of Technology (Natural Science), 2018, 32(12): 133-138. | |
56 | 许润, 刘金刚. 一种炉排式垃圾焚烧炉燃烧自动控制策略 [J]. 仪器仪表标准化与计量, 2017, (5): 28-30+6. |
Xu R, Liu J G. An automatic control strategy for combustion of grate-type waste incinerator [J]. Instrument Standardization & Metrology, 2017, (5): 28-30+6. | |
57 | 闫伟. 炉排炉垃圾焚烧发电厂燃烧自动控制系统的仿真研究 [D]. 沈阳: 沈阳工程学院, 2019. |
Yan W. Simulation research on combustion automatic control system of grate furnace waste incineration power plant [D]. Shenyang: Shenyang Institute of Engineering, 2019. | |
58 | 王健生. 基于PLC的机械炉排垃圾焚烧炉燃烧控制系统研究 [J]. 自动化应用, 2018, (9): 34-37. |
Wang J S. Study on combustion control system of mechanical grate-type waste incinerator based on PLC [J]. Automation Application, 2018, (9): 34-37. | |
59 | 章骅, 何品晶. 城市生活垃圾焚烧灰渣及其性质分析 [J]. 上海环境科学, 2002, (6): 356-360+89. |
Zhang H, He P J. Municipal solid waste incineration ashes and their properties [J]. Shanghai Environmental Sciences, 2002, (6): 356-360+89. | |
60 | 生活垃圾焚烧污染控制标准: [S]. 2014. |
Standard for pollution control on the municipal solid waste incineration: [S]. 2014. | |
61 | Allegrini E, Vadenbo C, Boldrin A, et al. Life cycle assessment of resource recovery from municipal solid waste incineration bottom ash [J]. Journal of Environmental Management, 2015, (151): 132-143. |
62 | Li X G, Lv Y, Ma B G, et al. Utilization of municipal solid waste incineration bottom ash in blended cement [J]. Journal of Cleaner Production, 2012, (32): 96-100. |
63 | Forteza R, Far M, Seguı C, et al. Characterization of bottom ash in municipal solid waste incinerators for its use in road base [J]. Waste Management, 2004, 24(9): 899-909. |
64 | Pera J, Coutaz L, Ambroise J, et al. Use of incinerator bottom ash in concrete [J]. Cement Concrete Research, 1997, 27(1): 1-5. |
65 | Sun X, Li J, Zhao X, et al. A review on the management of municipal solid waste fly ash in American [J]. Procedia Environmental Sciences, 2016, (31): 535-540. |
66 | 王晓东, 贾川, 赵爱华. 上海焚烧飞灰管理现状与典型案例分析 [J]. 环境卫生工程, 2020, 28(1): 50-53. |
Wang X D, Jia C, Zhao A H. Analysis on management status and typical case of incineration fly ash in Shanghai [J]. Environmental Sanitation Engineering, 2020, 28(1): 50-53. | |
67 | Ferreira C, Ribeiro A, Ottosen L. Possible applications for municipal solid waste fly ash [J]. Journal of Hazardous Materials, 2003, 96(2/3): 201-216. |
68 | 罗阿群, 刘少光, 林文松, 等. 二英生成机理及减排方法研究进展 [J]. 化工进展, 2016, 35(3): 910-916. |
Luo A Q, Liu S G, Lin W S, et al. Progress of formation mechanisms and emission reduction methods of PCDD/Fs [J]. Chemical Industry and Engineering Progress, 2016, 35(3): 910-916. | |
69 | 柴天佑. 复杂工业过程运行优化与反馈控制 [J]. 自动化学报, 2013, 39(11): 1744-1757. |
Chai T Y. Operational optimization and feedback control for complex industrial processes [J]. Acta Automatica Sinica, 2013, 39(11): 1744-1757. | |
70 | 叶龙伟. 基于重量法的烟气颗粒物浓度在线监测系统及其关键部件的设计 [D]. 太原: 太原理工大学, 2018. |
Ye L W. Design of on-line monitoring system of smoke particle concentration and its key components based on gravimetric [D]. Taiyuan: Taiyuan University of Technology, 2018. | |
71 | 李树珉. 烟气排放实时连续监测系统关键技术的研究 [D]. 天津: 天津大学, 2009. |
Li S M. Study on key technologies of continuous emissions monitoring system [D]. Tianjin: Tianjin University, 2009. | |
72 | 邵振华. 布袋除尘器优化节能除尘控制仪的设计与实现 [D]. 济南: 济南大学, 2017. |
Shao Z H. The design and implementation of the optimization and energy saving dust controller for bag filter [D]. Jinan: University of Jinan, 2017. | |
73 | 沈翔. 基于物联网的火电厂烟气脱硝系统在线监测平台关键模型的研究 [D]. 南京: 东南大学, 2016. |
Shen X. Model research for SCR system monitoring and management platform based on Internet of Things [D]. Nanjing: Southeast University, 2016. | |
74 | 徐海枝. 一种湿法烟气脱硫智能监控系统及方法 [J]. 科技通报, 2015, 31(7): 175-178. |
Xu H Z. A kind of intelligent monitoring system and method for wet flue gas desulfurization [J]. Bulletin of Science and Technology, 2015, 31(7): 175-178 | |
75 | 王苏. 基于PLC的烟气脱硫脱硝控制系统研究 [D]. 哈尔滨: 哈尔滨理工大学, 2016. |
Wang S. Study on flue gas desulfurization and denitrification system based on PLC [D]. Harbin: Harbin University of Science and Technology, 2016. | |
76 | 徐爱杰. 生活垃圾焚烧二英生成机理及控制技术 [J]. 化学工程与装备, 2019, (9): 278-279. |
Xu A J. Mechanism and control technology of PCDD/Fs generated from municipal solid waste incineration [J]. Chemical Engineering & Equipment, 2019, (9): 278-279 | |
77 | 俞明锋, 付建英, 詹明秀, 等. 生活废弃物焚烧处置烟气中二英排放特性研究 [J]. 环境科学学报, 2018, 38(5): 1983-1988. |
Yu M F, Fu J Y, Zhan M X, et al. The research of PCDD/Fs emission characteristics in flue gas from municipal solid waste [J]. Acta Scientiae Circumstantiae, 2018, 38(5): 1983-1988. | |
78 | 钱原吉, 吴占松. 生活垃圾焚烧炉中二英的生成和计算方法 [J]. 动力工程, 2007, (4): 616-619. |
Qian Y J, Wu Z S. Genesis of dioxin in garbage incinerators and a way of calculating its formation [J]. Journal of Power Engineering, 2007, (4): 616-619. | |
79 | Hung P C, Chang S H, Chang M B, et al. Continuous sampling of MSWI dioxins [J]. Chemosphere, 2016, (145): 119-124. |
80 | Urano K, Kato M, Syudo H, et al. Convenient dioxin measuring method using an efficient sampling train, an efficient HPLC system and a highly sensitive HRGC/LRMS with a PTV injector [J]. Chemosphere, 2001, 43(4/5/6/7): 425-431. |
81 | Lu J W, Zhang S, Lei M, et al. Status and perspectives of municipal solid waste incineration in China: a comparison with developed regions [J]. Waste Management, 2017, (69): 170-186. |
82 | 乔俊飞, 郭子豪, 汤健. 面向城市固废焚烧过程的二英排放浓度检测方法综述 [J]. 自动化学报, 2020, (6): 1063-1089. |
Qiao J F, Guo Z H, Tang J. Dioxin emission concentration measurement approaches for municipal solid wastes incineration process: a survey [J]. Acta Automatica Sinica, 2020, (6): 1063-1089. | |
83 | 肖晓东, 卢加伟, 海景, 等. 垃圾焚烧烟气中二英类浓度的支持向量回归预测 [J]. 可再生能源, 2017, 35(8): 1107-1114. |
Xiao X D, Lu J W, Hai J, et al. Prediction of dioxin emissions in flue gas from waste incineration based on support vector regression [J]. Renewable Energy Resources, 2017, 35(8): 1107-1114. | |
84 | Lin K P, Pai P F, Yang S L. Forecasting concentrations of air pollutants by logarithm support vector regression with immune algorithms [J]. Applied Mathematics Computation, 2011, 217(12): 5318-5327. |
85 | Tang J, Qiao J, Li W. Simplified stochastic configuration network-based optimised soft measuring model by using evolutionary computing framework with its application to dioxin emission concentration estimation [J]. International Journal of System Control Information Processing, 2018, 2(4): 332-365. |
86 | Stanmore B R. Modeling the formation of PCDD/F in solid waste incinerators [J]. Chemosphere, 2002, 47(6): 565-573. |
87 | Hasberg W, May H, Dorn I. Description of the residence-time behaviour and burnout of PCDD, PCDF and other higher chlorinated aromatic hydrocarbons in industrial waste incineration plants [J]. Chemosphere, 1989, 19(1/2/3/4/5/6): 565-571. |
88 | Chang N B, Huang S H. Statistical modelling for the prediction and control of PCDDs and PCDFs emissions from municipal solid waste incinerators [J]. Waste Management Research, 1995, 13(4): 379-400. |
89 | Tillman D A. Incineration of Municipal and Hazardous Solid Wastes [M]. Amsterdam: Elsevier, 2012. |
90 | Chang N B, Chen W. Prediction of PCDDs/PCDFs emissions from municipal incinerators by genetic programming and neural network modeling [J]. Waste Management Research, 2000, 18(4): 341-351. |
91 | Bunsan S, Chen W Y, Grisdanurak N, et al. Modeling the dioxin emission of a municipal solid waste incinerator using neural networks [J]. Chemosphere, 2013, 92(3): 258-264. |
92 | 李大中, 唐影. 垃圾焚烧发电污染物排放过程建模与优化 [J]. 可再生能源, 2015, 33(1): 118-123. |
Li D Z, Tang Y. Modeling and optimization of pollutants emission of waste incineration [J]. Renewable Energy Resources, 2015, 33(1): 118-123. | |
93 | 张晓翔. 飞行时间质谱仪在线检测二英指示物的试验研究 [D]. 杭州: 浙江大学, 2010. |
Zhang X X. Experimental study on on-line monitoring of PCDD/Fs indicator using TOF-MS [D]. Hangzhou: Zhejiang University, 2010 | |
94 | 尹雪峰, 李晓东, 陆胜勇, 等. 模拟烟气中痕量有机污染物生成的在线实时监测 [J]. 中国电机工程学报, 2007, (17): 29-33. |
Yin X F, Li X D, Lu S Y, et al. On-line real-time monitoring of trace organic pollutant formation in the simulated flue gas [J]. Proceedings of the CSEE, 2007, (17): 29-33. | |
95 | 郭颖, 陈彤, 杨杰, 等. 基于关联模型的二英在线检测研究 [J]. 环境工程学报, 2014, 8(8): 3524-3529. |
Guo Y, Chen T, Yang J, et al. Study on on-line detection of dioxins based on correlation model [J]. Chinese Journal of Environmental Engineering, 2014, 8(8): 3524-3529. | |
96 | 李阿丹, 洪伟, 王晶. 激光解吸/激光电离-质谱法二英及其关联物的在线检测 [J]. 燕山大学学报, 2015, 39(6): 511-515. |
Li A D, Hong W, Wang J. Online detection of dioxin and dioxin-related substances using laser desoption/laser ionization-mass spectrometry [J]. Journal of Yanshan University, 2015, 39(6): 511-515. | |
97 | Lavric E D, Konnov A A, de Ruyck J. Implementation of a detailed reaction mechanism for the modeling of dioxins' precursors formation [J]. Organohalogen Compounds, 2002, (56): 201-204. |
98 | Yan M, Li X, Chen T, et al. Effect of temperature and oxygen on the formation of chlorobenzene as the indicator of PCDD/Fs [J]. Journal of Environmental Sciences, 2010, 22(10): 1637-1642. |
99 | Tuppurainen K, Aatamila M, Ruokojärvi P, et al. Effect of liquid inhibitors on PCDD/F formation. Prediction of particle-phase PCDD/F concentrations using PLS modelling with gas-phase chlorophenol concentrations as independent variables [J]. Chemosphere, 1999, 38(10): 2205-2217. |
100 | Öberg T, Bergström J G. Emission and chlorination pattern of PCDD/PCDF predicted from indicator parameters [J]. Chemosphere, 1987, 16(6): 1221-1230. |
101 | 林斌斌. 生活垃圾焚烧炉中氯苯与二英排放关联研究 [D]. 杭州: 浙江大学, 2018. |
Lin B B. Research of the correlation of chlorobenzenes and PCDD/Fs emission from municipal solid waste incinerators [D]. Hangzhou: Zhejiang University, 2018. | |
102 | 王天娇. 生活垃圾焚烧过程中二英及其关联物氯苯的特性研究 [D]. 杭州: 浙江大学, 2018. |
Wang T J. Characteristics of PCDD/Fs related to chlorobenzenes in municipal solid waste incineration [D]. Hangzhou: Zhejiang University, 2018. | |
103 | Nakui H, Koyama H, Takakura A, et al. Online measurements of low-volatile organic chlorine for dioxin monitoring at municipal waste incinerators [J]. Chemosphere, 2011, 85(2): 151-155. |
104 | 尚凡杰. 二英关联模型及其在线监测初步研究 [D]. 杭州: 浙江大学, 2015. |
Shang F J. Study on dioxin correlation model and on-line monitoring [D]. Hangzhou: Zhejiang University, 2015. | |
105 | 曹轩. 基于可调谐激光电离耦合飞行时间质谱的焚烧过程二英在线快速检测技术研发 [D]. 杭州: 浙江大学, 2018. |
Cao X. Study on the atline measurement technique for dioxins from waste incineration based on tunable laser ionization coupled with time-of-flight mass spectrometry [D]. Hangzhou: Zhejiang University, 2018. | |
106 | Cao X, Stevens W R, Tang S F, et al. Atline measurement of 1,2, 4-trichlorobenzene for polychlorinated dibenzo-p-dioxin and dibenzofuran international toxic equivalent quantity prediction in the stack gas [J]. Environmental Pollution, 2019, (244): 202-208. |
107 | Zhang H J, Ni Y W, Chen J P, et al. Influence of variation in the operating conditions on PCDD/F distribution in a full-scale MSW incinerator [J]. Chemosphere, 2008, 70(4): 721-730. |
108 | 林晓青. 废物焚烧炉二英硫氨基复合阻滞的研究 [D]. 杭州: 浙江大学, 2015. |
Lin X Q. Research of PCDD/Fs inhibition from waste incinerator by S-N containing compounds [D]. Hangzhou: Zhejiang University, 2015. | |
109 | 周芳磊. 生活垃圾焚烧发电厂二英控制研究与实践 [J]. 环境卫生工程, 2019, 27(6): 93-96. |
Zhou F L. Research and practice of dioxin control in domestic waste incineration power plant [J]. Environmental Sanitation Engineering, 2019, 27(6): 93-96. |
[1] | Baiyu YANG, Yue KOU, Juntao JIANG, Yali ZHAN, Qinghong WANG, Chunmao CHEN. Chemical conversion of dissolved organic matter in petrochemical spent caustic along a wet air oxidation pretreatment process [J]. CIESC Journal, 2023, 74(9): 3912-3920. |
[2] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[3] | Longyi LYU, Wenbo JI, Muda HAN, Weiguang LI, Wenfang GAO, Xiaoyang LIU, Li SUN, Pengfei WANG, Zhijun REN, Guangming ZHANG. Enhanced anaerobic removal of halogenated organic pollutants by iron-based conductive materials: research progress and future perspectives [J]. CIESC Journal, 2023, 74(8): 3193-3202. |
[4] | Chen HAN, Youmin SITU, Bin ZHU, Jianliang XU, Xiaolei GUO, Haifeng LIU. Study of reaction and flow characteristics in multi-nozzle pulverized coal gasifier with co-processing of wastewater [J]. CIESC Journal, 2023, 74(8): 3266-3278. |
[5] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[6] | Zhaoguang CHEN, Yuxiang JIA, Meng WANG. Modeling neutralization dialysis desalination driven by low concentration waste acid and its validation [J]. CIESC Journal, 2023, 74(6): 2486-2494. |
[7] | Xueyan WEI, Yong QIAN. Experimental study on the low to medium temperature oxidation characteristics and kinetics of micro-size iron powder [J]. CIESC Journal, 2023, 74(6): 2624-2638. |
[8] | Ruiheng WANG, Pinjing HE, Fan LYU, Hua ZHANG. Parameter comparison and optimization of three solid-liquid separation methods for washed air pollution control residues from municipal solid waste incinerators [J]. CIESC Journal, 2023, 74(4): 1712-1723. |
[9] | Xiangning HU, Yuanbo YIN, Chen YUAN, Yun SHI, Cuiwei LIU, Qihui HU, Wen YANG, Yuxing LI. Experimental study on visualization of refined oil migration in soil [J]. CIESC Journal, 2023, 74(4): 1827-1835. |
[10] | Lingxin ZU, Rongting HU, Xin LI, Yudao CHEN, Guanglin CHEN. Carbon release products and denitrification bioavailability from chemical components of woody biomass [J]. CIESC Journal, 2023, 74(3): 1332-1342. |
[11] | Dingping LIU, Aihua CHEN, Xiangyang ZHANG, Wenhao HE, Hai WANG. Study on semi dry hydrolytic denitrification of aluminum ash [J]. CIESC Journal, 2023, 74(3): 1294-1302. |
[12] | Yin XU, Jie CAI, Lu CHEN, Yu PENG, Fuzhen LIU, Hui ZHANG. Advances in heterogeneous visible light photocatalysis coupled with persulfate activation for water pollution control [J]. CIESC Journal, 2023, 74(3): 995-1009. |
[13] | Kuan HUANG, Yongde MA, Zhenping CAI, Yanning CAO, Lilong JIANG. Research progress in catalytic hydroconversion of lipid to second-generation biodiesel [J]. CIESC Journal, 2023, 74(1): 380-396. |
[14] | Wenjing LU, Xianfeng LI. Research process of porous ion conducting membranes for flow batteries [J]. CIESC Journal, 2023, 74(1): 192-204. |
[15] | Xinyi LUO, Chao FENG, Jing LIU, Yu QIAO. Phosphorus recovery from products of sewage sludge via different thermal treatment processes [J]. CIESC Journal, 2022, 73(9): 4034-4044. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||