CIESC Journal ›› 2020, Vol. 71 ›› Issue (10): 4553-4574.DOI: 10.11949/0438-1157.20200750
• Reviews and monographs • Previous Articles Next Articles
Wenjing ZHANG(),Jing LI(),Zidong WEI
Received:
2020-06-15
Revised:
2020-07-22
Online:
2020-10-05
Published:
2020-10-05
Contact:
Jing LI
通讯作者:
李静
作者简介:
张文静(1996—),女,博士研究生,基金资助:
CLC Number:
Wenjing ZHANG, Jing LI, Zidong WEI. Strategies for tuning porous structures of air electrode in fuel cells[J]. CIESC Journal, 2020, 71(10): 4553-4574.
张文静, 李静, 魏子栋. 燃料电池空气电极的孔道结构调控[J]. 化工学报, 2020, 71(10): 4553-4574.
Add to citation manager EndNote|Ris|BibTeX
1 | Borup R, Meyers J, Pivovar B, et al. Scientific aspects of polymer electrolyte fuel cell durability and degradation[J]. Chem. Rev., 2007, 107(10): 3904-3951. |
2 | Banham D, Ye S, Pei K, et al. A review of the stability and durability of non-precious metal catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells[J]. J. Power Sources, 2015, 285(1): 334-348. |
3 | Rossi K, Asara G G, Baletto F. Structural screening and design of platinum nanosamples for oxygen reduction[J]. ACS Catal., 2020, 10(6): 3911-3920. |
4 | Egeblad K, Christensen C H, Kustova M, et al., Templating mesoporous zeolites[J]. Chem. Mater., 2008, 20(3): 946-960. |
5 | Groen, J C, Zhu W D, Brouwer S, et al. Direct demonstration of enhanced diffusion in mesoporous ZSM-5 zeolite obtained via controlled desilication[J]. J. Am. Chem. Soc., 2007, 129(2): 355-360. |
6 | Meng Y Y, Voiry D, Goswami A, et al. N-, O-, and S-tridoped nanoporous carbons as selective catalysts for oxygen reduction and alcohol oxidation reactions[J]. J. Am. Chem. Soc., 2014, 136(39): 13554-13557. |
7 | Wei Q, Cherif M, Zhang G, et al. Transforming reed waste into a highly active metal-free catalyst for oxygen reduction reaction[J]. Nano Energy, 2019, 62: 700-708. |
8 | Kim B N, Kang D, Cho S C, et al. Shorter dinucleotide repeat length in the DRD5 gene is associated with attention deficit hyperactivity disorder[J]. Psychiat. Genet., 2009, 19(1): 57. |
9 | Orilall M C, Wiesner U. Block copolymer based composition and morphology control in nanostructured hybrid materials for energy conversion and storage: solar cells, batteries, and fuel cells[J]. Chem. Soc. Rev., 2011, 40(2): 520-535. |
10 | Lee S, Choun M, Ye Y, et al. Designing a highly active metal-free oxygen reduction catalyst in membrane electrode assemblies for alkaline fuel cells: effects of pore size and doping-site position[J]. Angew. Chem. Int. Edit., 2015, 54(32): 9230-9234. |
11 | Chen J Z, Xu J L, Zhou S, et al. Nitrogen-doped hierarchically porous carbon foam: a free-standing electrode and mechanical support for high-performance supercapacitors[J]. Nano Energy, 2016, 25: 193-202. |
12 | Guo L, Jiang W J, Zhang Y, et al. Embedding Pt nanocrystals in N-doped porous carbon/carbon nanotubes toward highly stable electrocatalysts for the oxygen reduction reaction[J]. ACS Catal., 2015, 5(5): 2903-2909. |
13 | Takenaka S, Miyamoto H, Utsunomiya Y, et al. Catalytic activity of highly durable Pt/CNT catalysts covered with hydrophobic silica layers for the oxygen reduction reaction in PEFCs[J]. J. Phys. Chem. C, 2014, 118(2): 774-783. |
14 | Xu J, Zhao Y, Shen C, et al. Sulfur- and nitrogen-doped, ferrocene-derived mesoporous carbons with efficient electrochemical reduction of oxygen[J]. ACS Appl. Mater. Inter., 2013, 5(23): 12594-12601. |
15 | Zhang D, Hao Y, Zheng L, et al. Nitrogen and sulfur co-doped ordered mesoporous carbon with enhanced electrochemical capacitance performance[J]. J. Mater. Chem., 2013, 1(26): 7584-7591. |
16 | Chang Y, Hong F, Liu J, et al. Nitrogen/sulfur dual-doped mesoporous carbon with controllable morphology as a catalyst support for the methanol oxidation reaction[J]. Carbon, 2015, 87: 424-433. |
17 | Tian C, Tao W, Wang D J, et al. Synthesis of ordered large-pore mesoporous carbon for Cr(Ⅵ) adsorption[J]. Mater. Res. Bull., 2011, 46(9): 1424-1430. |
18 | Lin T, Chen I W, Liu F, et al. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage[J]. Science, 2015, 350(6267): 1508-1513. |
19 | Lu J, Bo X, Wang H, et al. Nitrogen-doped ordered mesoporous carbons synthesized from honey as metal-free catalyst for oxygen reduction reaction[J]. Electrochim. Acta, 2013, 108(1): 10-16. |
20 | Zhang Y, Chen L, Meng Y, et al. Lithium and sodium storage in highly ordered mesoporous nitrogen-doped carbons derived from honey[J]. J. Power Sources, 2016, 335: 20-30. |
21 | Mane G P, Talapaneni S N, Anand C. Preparation of highly ordered nitrogen-containing mesoporous carbon from a gelatin biomolecule and its excellent sensing of acetic acid[J]. Adv. Funct. Mater., 2012, 22(17): 3596-3604. |
22 | Wang W, Luo J, Chen W, et al. Synthesis of mesoporous Fe/N/C oxygen reduction catalysts through NaCl crystallite-confined pyrolysis of polyvinylpyrrolidone[J]. J. Mater. Chem. A, 2016, 4(33): 12768-12773. |
23 | Liang Y, Liu H, Li Z, et al. In situ polydopamine coating-directed synthesis of nitrogen-doped ordered nanoporous carbons with superior performance in supercapacitors[J]. J. Mater. Chem., 2013, 1(48): 15207-15211. |
24 | Talapaneni S N, Mane G P, Park D, et al. Diaminotetrazine based mesoporous C3N6 with well-ordered 3D cubic structure and its excellent photocatalytic performance on hydrogen evolution[J]. J. Mater. Chem., 2017, 5(34): 18183-18192. |
25 | Lakhi K S S, Park D H, Singh G, et al. Energy efficient synthesis of highly ordered mesoporous carbon nitrides with uniform rods and their superior CO2 adsorption capacity[J]. J. Mater. Chem., 2017, 5(31): 16220-16230. |
26 | Yang Z, Yao Z, Li G, et al. Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction[J]. ACS Nano, 2012, 6(1): 205-211. |
27 | Ji L, Yan J, Jaroniec M, et al. Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance[J]. Angew. Chem. Int. Ed. Engl., 2012, 51(46): 11808. |
28 | Pan F, Cao Z, Zhao Q, et al. Nitrogen-doped porous carbon nanosheets made from biomass as highly active electrocatalyst for oxygen reduction reaction[J]. J. Power Sources, 2014, 272: 8-15. |
29 | Zhao Y, Hu C, Hu Y, et al. A versatile, ultralight, nitrogen‐doped graphene framework[J]. Angew. Chem. Int. Ed. Engl., 2012, 51(45): 11371-11375. |
30 | Li Y, Zhou W, Wang H, et al. An oxygen reduction electrocatalyst based on carbon nanotube–graphene complexes[J]. Nat. Nanotechnol., 2012, 7(6): 394-400. |
31 | Xiong W, Du F, Liu Y, et al. Society, 3-D carbon nanotube structures used as high performance catalyst for oxygen reduction reaction[J]. J. Am. Chem. Soc., 2010, 132(45): 15839-15841. |
32 | Jin C, Nagaiah T C, Xia W, et al. Metal-free and electrocatalytically active nitrogen-doped carbon nanotubes synthesized by coating with polyaniline[J]. Nanoscale, 2010, 2(6): 981-987. |
33 | Wei W, Liang H, Parvez K, et al. Nitrogen-doped carbon nanosheets with size-defined mesopores as highly efficient metal-free catalyst for the oxygen reduction reaction[J]. Angew. Chem. Int. Ed. Engl., 2014, 53(6): 1570-1574. |
34 | Liang J, Du X, Gibson C, et al. N-doped graphene natively grown on hierarchical ordered porous carbon for enhanced oxygen reduction[J]. Adv. Mater., 2013, 25(43): 6226-6231. |
35 | Yang, D S, Bhattacharjya D, Inamdar S, et al. Phosphorus-doped ordered mesoporous carbons with different lengths as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline media[J]. J. Am. Chem. Soc., 2012, 134(39): 16127-16130. |
36 | Liu R, Wu D, Feng X, et al. Nitrogen doped ordered mesoporous graphitic arrays with high electrocatalytic activity for oxygen reduction[J]. Angew. Chem. Int. Edit., 2010, 122(14): 2565-2569. |
37 | Liang J, Zheng Y, Chen J, et al. Facile oxygen reduction on a three-dimensionally ordered macroporous graphitic C3N4/carbon composite electrocatalyst[J]. Angew. Chem. Int. Edit., 2012, 51(16): 3892-3896. |
38 | Yang X F, Wang A, Qiao B, et al. Single-atom catalysts: a new frontier in heterogeneous catalysis[J]. Accounts Chem. Res., 2013, 46(8): 1740-1748. |
39 | Li F, Shu H, Hu C, et al. Atomic mechanism of electrocatalytically active Co-N complexes in graphene basal plane for oxygen reduction reaction[J]. ACS Appl. Mater. Inter., 2015, 7(49): 27405-27413. |
40 | Shui J, Wang M, Du F, et al. N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells[J]. Sci. Adv., 2015, 1(1): e1400129. |
41 | Mun Y, Kim M J, Park S A, et al. Soft-template synthesis of mesoporous non-precious metal catalyst with Fe-Nx/C active sites for oxygen reduction reaction in fuel cells[J]. Appl. Catal. B, 2018, 222: 191-199. |
42 | Wei Q, Zhang G, Yang X, et al. 3D porous Fe/N/C spherical nanostructures as high-performance electrocatalysts for oxygen reduction in both alkaline and acidic media[J]. ACS Appl. Mater. Inter., 2017, 9(42): 36944-36954. |
43 | Liang H, Wei W, Wu Z, et al. Mesoporous metal-nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction[J]. J. Am. Chem. Soc., 2013, 135(43): 16002-16005. |
44 | Zhang J, Zhao Z, Xia Z, et al. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions[J]. Nat. Nanotechnol., 2015, 10(5): 444-452. |
45 | Sun T, Shan N, Xu L, et al. General synthesis of 3D ordered macro-/mesoporous materials by templating mesoporous silica confined in opals[J]. Chem. Mater., 2018, 30(5): 1617-1624. |
46 | Parlett C M, Wilson K, Lee A F. Hierarchical porous materials: catalytic applications[J]. Chem. Soc. Rev., 2013, 42(9): 3876-3893. |
47 | Song D, Naik A, Li S, et al. Rapid, large-area synthesis of hierarchical nanoporous silica hybrid films on flexible substrates[J]. J. Am. Chem. Soc., 2016, 138(41): 13473-13476. |
48 | Zuo X, Xia Y, Ji Q, et al. Self-templating construction of 3D hierarchical macro-/mesoporous silicon from 0D silica nanoparticles[J]. ACS Nano, 2017, 11(1): 889-899. |
49 | Lokupitiya H N, Jones A, Reid B, et al. Ordered mesoporous to macroporous oxides with tunable isomorphic architectures: solution criteria for persistent micelle templates[J]. Chem. Mater., 2016, 28(6): 1653-1667. |
50 | Zitolo A, Goellner V, Armel V, et al. Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials[J]. Nat. Mater., 2015, 14(9): 937-942. |
51 | Fei H, Dong J, Feng Y, et al. General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities[J]. Nat. Catal., 2018, 1(1): 63-72. |
52 | Sun T, Zhao S, Chen W, et al. Single-atomic cobalt sites embedded in hierarchically ordered porous nitrogen-doped carbon as a superior bifunctional electrocatalyst[J]. P. Natl. Acad. Sci. USA, 2018, 115(50): 12692-12697. |
53 | Wang M J, Zhao T, Luo W, et al. Quantified mass transfer and superior antiflooding performance of ordered macro-mesoporous electrocatalysts[J]. AIChE J., 2018, 64(7): 2881-2889. |
54 | Wang H, Li W, Zhu Z, et al. Fabrication of an N-doped mesoporous bio-carbon electrocatalyst efficient in Zn-air batteries by an in situ gas-foaming strategy[J]. Chem. Commun., 2019, 55(100): 15117-15120. |
55 | Liu X, Antonietti M. Moderating black powder chemistry for the synthesis of doped and highly porous graphene nanoplatelets and their use in electrocatalysis[J]. Adv. Mater., 2013, 25(43): 6284-6290. |
56 | He W, Jiang C, Wang J, et al. High-rate oxygen electroreduction over graphitic-N species exposed on 3D hierarchically porous nitrogen-doped carbons[J]. Angew. Chem. Int. Ed. Engl., 2014, 53(36): 9503-9507. |
57 | Paraknowitsch J P, Thomas A. Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications[J]. Energ. Environ. Sci., 2013, 6(10): 2839-2855. |
58 | Zhang G, Luo H, Li H, et al. ZnO-promoted dechlorination for hierarchically nanoporous carbon as superior oxygen reduction electrocatalyst[J]. Nano Energy, 2016, 26: 241-247. |
59 | Tian P, Wang Y, Li W, et al. A salt induced gelatin crosslinking strategy to prepare Fe-N doped aligned porous carbon for efficient oxygen reduction reaction catalysts and high-performance supercapacitors[J]. J. Catal., 2020, 382: 109-120. |
60 | Li W, Ding W, Jiang J, et al. A phase-transition-assisted method for the rational synthesis of nitrogen-doped hierarchically porous carbon materials for the oxygen reduction reaction[J]. J. Mater. Chem. A, 2018, 6(3): 878-883. |
61 | Mao, Z X, Wang M J, Liu L, et al. ZnCl2 salt facilitated preparation of FeNC: enhancing the content of active species and their exposure for highly-efficient oxygen reduction reaction[J]. Chinese J. Catal., 2020, 41(5): 799-806. |
62 | Wang Y, Chen W, Nie Y, et al. Construction of a porous nitrogen-doped carbon nanotube with open-ended channels to effectively utilize the active sites for excellent oxygen reduction reaction activity[J]. Chem. Commun., 2017, 53(83): 11426-11429. |
63 | Muldoon P F, Liu C, Miller C C, et al. Programmable topology in new families of heterobimetallic metal-organic frameworks[J]. J. Am. Chem. Soc., 2018, 140(20): 6194-6198. |
64 | Wang H, Dong X, Lin J, et al. Topologically guided tuning of Zr-MOF pore structures for highly selective separation of C6 alkane isomers[J]. Nat. Commun., 2018, 9(1): 1745. |
65 | Zhang Y, Zhou H, Lin R, et al. Geometry analysis and systematic synthesis of highly porous isoreticular frameworks with a unique topology[J]. Nat.Commun., 2012, 3(1): 642. |
66 | Yang, S J, Kim T, Im J H, et al. MOF-derived hierarchically porous carbon with exceptional porosity and hydrogen storage capacity[J]. Chem. Mater., 2012, 24(3): 464-470. |
67 | Zhao R, Xia W, Lin C, et al. A pore-expansion strategy to synthesize hierarchically porous carbon derived from metal-organic framework for enhanced oxygen reduction[J]. Carbon, 2017, 114: 284-290. |
68 | Park J, Lee H, Bae Y E, et al. Dual-functional electrocatalyst derived from iron-porphyrin-encapsulated metal-organic frameworks[J]. ACS Appl. Mater. Inter., 2017, 9(34): 28758-28765. |
69 | Wang J, Wu G, Wang W, et al. A neural-network-like catalyst structure for the oxygen reduction reaction: carbon nanotube bridged hollow PtCo alloy nanoparticles in a MOF-like matrix for energy technologies[J]. J. Mater. Chem. A, 2019, 7(34): 19786-19792. |
70 | Li W, Ding W, Nie Y, et al. Transformation of metal-organic frameworks into huge-diameter carbon nanotubes with high performance in proton exchange membrane fuel cells[J]. ACS Appl. Mater. Inter., 2019, 11(25): 22290-22296. |
71 | Najam T, Shah S S, Ding W, et al. Enhancing by nano-engineering: hierarchical architectures as oxygen reduction/ evolution reactions for zinc-air batteries[J]. J. Power Sources, 2019, 438: 226919. |
72 | Ahn S H, Yu X, Manthiram A. “Wiring” Fe-Nx -embedded porous carbon framework onto 1D nanotubes for efficient oxygen reduction reaction in alkaline and acidic media[J]. Adv. Mater., 2017, 29(26): 1606534. |
73 | Wang M J, Mao Z X, Liu L, et al. Preparation of hollow nitrogen doped carbon via stresses induced orientation contraction[J]. Small, 2018, 14(52): e1804183. |
[1] | Laiming LUO, Jin ZHANG, Zhibin GUO, Haining WANG, Shanfu LU, Yan XIANG. Simulation and experiment of high temperature polymer electrolyte membrane fuel cells stack in the 1—5 kW range [J]. CIESC Journal, 2023, 74(4): 1724-1734. |
[2] | Zhiguang QIAN, Yue FAN, Shixue WANG, Like YUE, Jinshan WANG, Yu ZHU. Effect of purging conditions on the impedance relaxation phenomenon and low temperature start-up of PEMFC [J]. CIESC Journal, 2023, 74(3): 1286-1293. |
[3] | Xiang GUO, Jinshuo QIAO, Zhenhua WANG, Wang SUN, Kening SUN. Progress of structure for carbon-fueled solid oxide fuel cells [J]. CIESC Journal, 2023, 74(1): 290-302. |
[4] | Jian SHAO, Junzong FENG, Fengqi LIU, Yonggang JIANG, Liangjun LI, Jian FENG. Research progress on structural modulation and functionalized preparation of phenolic resin-based carbon microspheres [J]. CIESC Journal, 2022, 73(9): 3787-3801. |
[5] | Wanchen ZHANG, Xiaoyang CHEN, Qiuqiu LYU, Qin ZHONG, Tenglong ZHU. Performance and durability of cobalt doped SrTi0.3Fe0.7O3-δ anode SOFC fueled with by-product gas from chemical industry [J]. CIESC Journal, 2022, 73(9): 4079-4086. |
[6] | Chengyi AI, Jinshuo QIAO, Zhenhuan WANG, Wang SUN, Kening SUN. Investigation on PrBaFe2O6-δ anode material with in-situ FeNi nanoparticle in direct carbon solid oxide fuel cell [J]. CIESC Journal, 2022, 73(8): 3708-3719. |
[7] | Guang YANG, Xin CHENG, Zheng WANG, Ye WANG, Liangjun ZHANG, Jingyi WU. Analytical prediction model of permeability for rarefied gas flow in porous structures with micro or nanopores [J]. CIESC Journal, 2022, 73(7): 2895-2901. |
[8] | Wenhuai LI, Wei ZHOU. Analysis of influencing factors and design strategies of high oxygen ion conductivity perovskite [J]. CIESC Journal, 2022, 73(4): 1455-1471. |
[9] | Ming PENG, Qiangfeng XIA, Lixiang JIANG, Ruiyuan ZHANG, Lingyi GUO, Li CHEN, Wenquan TAO. Study on the effect of gas channel arrangement on the performance of air-cooled fuel cells [J]. CIESC Journal, 2022, 73(10): 4625-4637. |
[10] | FU Fengyan, XING Guang'en. Progress of polymer-based anion exchange membrane for alkaline fuel cell application [J]. CIESC Journal, 2021, 72(S1): 42-52. |
[11] | XU Bin. Parameter optimal identification of proton exchange membrane fuel cell model based on an improved differential evolution algorithm [J]. CIESC Journal, 2021, 72(3): 1512-1520. |
[12] | ZHANG Jin, GUO Zhibin, ZHANG Jujia, WANG Haining, XIANG Yan, JIANG San Ping, LU Shanfu. Study on performance of polyethersulfone-polyvinylpyrrolidone high temperature polymer electrolyte membrane and fuel cell stack [J]. CIESC Journal, 2021, 72(1): 589-596. |
[13] | GUO Jianing, XIANG Zhonghua. Progress of metal macrocyclic compound-based oxygen reduction electrocatalysts [J]. CIESC Journal, 2021, 72(1): 384-397. |
[14] | Yang XIAO, Chunming XU, Xiaoxia YANG, Lihong ZHANG, Wang SUN, Jinshuo QIAO, Zhenhua WANG, Kening SUN. Preparation and electrochemical properties of NiMn2O4 spinel oxide cathode [J]. CIESC Journal, 2020, 71(9): 4292-4302. |
[15] | Haitao CHEN, Jinshuo QIAO, Zhenhuan WANG, Wang SUN, Haijun LI, Kening SUN. Investigation on preparation and carbon catalytic ability of in-situ bimetallic nanoparticle YST composite anode [J]. CIESC Journal, 2020, 71(9): 4270-4281. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||