CIESC Journal ›› 2020, Vol. 71 ›› Issue (10): 4490-4501.DOI: 10.11949/0438-1157.20200759
• Reviews and monographs • Previous Articles Next Articles
Cunpu LI(),Jianchuan WANG,Zidong WEI()
Received:
2020-06-16
Revised:
2020-07-23
Online:
2020-10-05
Published:
2020-10-05
Contact:
Zidong WEI
通讯作者:
魏子栋
作者简介:
李存璞(1986—),男,博士,副教授,基金资助:
CLC Number:
Cunpu LI, Jianchuan WANG, Zidong WEI. Mesoscopic strategies and molecular design of diaphragm for electrochemical reactors[J]. CIESC Journal, 2020, 71(10): 4490-4501.
李存璞, 王建川, 魏子栋. 电化学反应器隔膜材料的分子设计与介尺度策略[J]. 化工学报, 2020, 71(10): 4490-4501.
Add to citation manager EndNote|Ris|BibTeX
68 | Ren R, Zhang S, Miller H A, et al. Facile preparation of an ether-free anion exchange membrane with pendant cyclic quaternary ammonium groups[J]. ACS Applied Energy Materials, 2019, 2(7): 4576-4581. |
69 | Arges C G, Zhang L. Anion exchange membranes evolution toward high hydroxide ion conductivity and alkaline resiliency[J]. ACS Applied Energy Materials, 2018, 1(7): 2991-3012. |
1 | Zhou G, Li L, Wang D W, et al. A flexible sulfur-graphene-polypropylene separator integrated electrode for advanced Li-S batteries[J]. Advanced Materials, 2015, 27(4): 641-647. |
2 | Yao H, Yan K, Li W, et al. Improved lithium-sulfur batteries with a conductive coating on the separator to prevent the accumulation of inactive S-related species at the cathode–separator interface[J]. Energy & Environmental Science, 2014, 7(10): 3381-3390. |
3 | Chung S H, Manthiram A. Bifunctional separator with a light-weight carbon-coating for dynamically and statically stable lithium-sulfur batteries[J]. Advanced Functional Materials, 2014, 24(33): 5299-5306. |
4 | Gu X, Tong C, Lai C, et al. A porous nitrogen and phosphorous dual doped graphene blocking layer for high performance Li-S batteries[J]. Journal of Materials Chemistry A, 2015, 3(32): 16670-16678. |
5 | Jin Z, Xie K, Hong X, et al. Application of lithiated Nafion ionomer film as functional separator for lithium sulfur cells[J]. Journal of Power Sources, 2012, 218: 163-167. |
6 | Hao Z, Yuan L, Li Z, et al. High performance lithium-sulfur batteries with a facile and effective dual functional separator[J]. Electrochimica Acta, 2016, 200: 197-203. |
7 | Luo X, Lu X, Zhou G, et al. Ion-selective polyamide acid nanofiber separators for high-rate and stable lithium–sulfur batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(49): 42198-42206. |
8 | Peng Q, Yu F, Wang W, et al. Ultralight polyethylenimine/porous carbon modified separator as an effective polysulfide-blocking barrier for lithium-sulfur battery[J]. Electrochimica Acta, 2019, 299: 749-755. |
9 | Yu X, Wu H, Koo J H, et al. Tailoring the pore size of a polypropylene separator with a polymer having intrinsic nanoporosity for suppressing the polysulfide shuttle in lithium-sulfur batteries[J]. Advanced Energy Materials, 2020, 10(1): 1902872. |
10 | Zhang Z, Lai Y, Zhang Z, et al. Al2O3-coated porous separator for enhanced electrochemical performance of lithium sulfur batteries[J]. Electrochimica Acta, 2014, 129: 55-61. |
70 | Chen J, Li C, Wang J, et al. A general strategy to enhance the alkaline stability of anion exchange membranes[J]. Journal of Materials Chemistry A, 2017, 5(13): 6318-6327. |
11 | Zhang J, Rao Q, Jin B, et al. Cerium oxide embedded bilayer separator enabling fast polysulfide conversion for high-performance lithium-sulfur batteries[J]. Chemical Engineering Journal, 2020, 388: 124120. |
12 | Shao H, Wang W, Zhang H, et al. Nano-TiO2 decorated carbon coating on the separator to physically and chemically suppress the shuttle effect for lithium-sulfur battery[J]. Journal of Power Sources, 2018, 378: 537-545. |
13 | Song X, Chen G, Wang S, et al. Self-assembled close-packed MnO2 nanoparticles anchored on a polyethylene separator for lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(31): 26274-26282. |
14 | Hong X J, Song C L, Yang Y, et al. Cerium based metal-organic frameworks as an efficient separator coating catalyzing the conversion of polysulfides for high performance lithium–sulfur batteries[J]. ACS Nano, 2019, 13(2): 1923-1931. |
15 | Cai W, Li G, Zhang K, et al. Conductive nanocrystalline niobium carbide as high‐efficiency polysulfides tamer for lithium‐sulfur batteries[J]. Advanced Functional Materials, 2018, 28(2): 1704865. |
16 | Ghazi Z A, He X, Khattak A M, et al. MoS2/celgard separator as efficient polysulfide barrier for long-life lithium-sulfur batteries[J]. Advanced Materials, 2017, 29(21): 1606817. |
17 | Wang P, Bao J, Lv K, et al. Rational design of a gel-polymer-inorganic separator with uniform lithium-ion deposition for highly stable lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(39): 35788-35795. |
18 | Hwang J Y, Kim H M, Lee S K, et al. High-energy, high-rate, lithium-sulfur batteries: synergetic effect of hollow TiO2-webbed carbon nanotubes and a dual functional carbon‐paper interlayer[J]. Advanced Energy Materials, 2016, 6(1): 1501480. |
19 | Dong Q, Shen R, Li C, et al. Construction of soft base tongs on separator to grasp polysulfides from shuttling in lithium-sulfur batteries[J]. Small, 2018, 14(52): e1804277. |
20 | Sun J, Sun Y, Pasta M, et al. Entrapment of polysulfides by a black‐phosphorus‐modified separator for lithium-sulfur batteries[J]. Advanced Materials, 2016, 28(44): 9797-9803. |
21 | Song R, Fang R, Wen L, et al. A trilayer separator with dual function for high performance lithium-sulfur batteries[J]. Journal of Power Sources, 2016, 301: 179-186. |
22 | Dong Q, Wang T, Gan R, et al. Balancing the seesaw: investigation of a separator to grasp polysulfides with diatomic chemisorption[J]. ACS Applied Materials & Interfaces, 2020, 12(18): 20596-20604. |
23 | Varcoe J R, Atanassov P, Dekel D R, et al. Anion-exchange membranes in electrochemical energy systems[J]. Energy & Environmental Science, 2014, 7(10): 3135-3191. |
24 | Wang Y J, Qiao J, Baker R, et al. Alkaline polymer electrolyte membranes for fuel cell applications[J]. Chemical Society Reviews, 2013, 42(13): 5768-5787. |
25 | Yang Y, Wang J, Zheng J, et al. A stable anion exchange membrane based on imidazolium salt for alkaline fuel cell[J]. Journal of Membrane Science, 2014, 467: 48-55. |
26 | Dai P, Mo Z H, Xu R W, et al. Cross-linked quaternized poly(styrene-b-(ethylene-co-butylene)-b-styrene) for anion exchange membrane: synthesis, characterization and properties[J]. ACS Applied Materials & Interfaces, 2016, 8(31): 20329-20341. |
27 | Dong X, Lv D, Zheng J, et al. Pyrrolidinium-functionalized poly(arylene ether sulfone)s for anion exchange membranes: using densely concentrated ionic groups and block design to improve membrane performance[J]. Journal of Membrane Science, 2017, 535: 301-311. |
28 | Hao J, Gao X, Jiang Y, et al. Crosslinked high-performance anion exchange membranes based on poly(styrene-b-(ethylene-co-butylene)-b-styrene)[J]. Journal of Membrane Science, 2018, 551: 66-75. |
29 | Strasser D J, Graziano B J, Knauss D M. Base stable poly(diallylpiperidinium hydroxide) multiblock copolymers for anion exchange membranes[J]. Journal of Materials Chemistry A, 2017, 5(20): 9627-9640. |
30 | Wang Z, Li Z, Chen N, et al. Crosslinked poly (2,6-dimethyl-1,4-phenylene oxide) polyelectrolyte enhanced with poly (styrene-b-(ethylene-co-butylene)-b-styrene) for anion exchange membrane applications[J]. Journal of Membrane Science, 2018, 564: 492-500. |
31 | Zhang K, Gong S, Zhao B, et al. Bent-twisted block copolymer anion exchange membrane with improved conductivity[J]. Journal of Membrane Science, 2018, 550: 59-71. |
32 | Zhang X, Chen P, Shi Q, et al. Block poly(arylene ether sulfone) copolymers bearing quaterinized aromatic pendants: synthesis, property and stability[J]. International Journal of Hydrogen Energy, 2017, 42(42): 26320-26332. |
33 | Guo D, Lai A N, Lin C X, et al. Imidazolium-functionalized poly(arylene ether sulfone) anion-exchange membranes densely grafted with flexible side chains for fuel cells[J]. ACS Applied Materials & Interfaces, 2016, 8(38): 25279-25288. |
34 | Han J, Zhu L, Pan J, et al. Elastic long-chain multication cross-linked anion exchange membranes[J]. Macromolecules, 2017, 50(8): 3323-3332. |
35 | Jannasch P, Weiber E A. Configuring anion-exchange membranes for high conductivity and alkaline stability by using cationic polymers with tailored side chains[J]. Macromolecular Chemistry and Physics, 2016, 217(10): 1108-1118. |
36 | Lai A N, Zhuo Y Z, Lin C X, et al. Side-chain-type phenolphthalein-based poly(arylene ether sulfone nitrile)s anion exchange membrane for fuel cells[J]. Journal of Membrane Science, 2016, 502: 94-105. |
37 | Pan J, Han J, Zhu L, et al. Cationic side-chain attachment to poly(phenylene oxide) backbones for chemically stable and conductive anion exchange membranes[J]. Chemistry of Materials, 2017, 29(12): 5321-5330. |
38 | Zeng L, Zhao T S. An effective strategy to increase hydroxide-ion conductivity through microphase separation induced by hydrophobic-side chains[J]. Journal of Power Sources, 2016, 303: 354-362. |
39 | Zhang M, Shan C, Liu L, et al. Facilitating anion transport in polyolefin-based anion exchange membranes via bulky side chains[J]. ACS Applied Materials & Interfaces, 2016, 8(35): 23321-23330. |
40 | Wang L, Bellini M, Miller H A, et al. A high conductivity ultrathin anion-exchange membrane with 500+ h alkali stability for use in alkaline membrane fuel cells that can achieve 2 W/cm2 at 80℃[J]. Journal of Materials Chemistry A, 2018, 6(31): 15404-15412. |
41 | Pan J, Chen C, Li Y, et al. Constructing ionic highway in alkaline polymer electrolytes[J]. Energy & Environmental Science, 2014, 7(1): 354-360. |
42 | Cheng X, Wang J, Liao Y, et al. Enhanced conductivity of anion-exchange membrane by incorporation of quaternized cellulose nanocrystal[J]. ACS Applied Materials & Interfaces, 2018, 10(28): 23774-23782. |
43 | Wang Y, Wan H, Wang D, et al. Preparation and characterization of a semi-interpenetrating network alkaline anion exchange membrane[J]. Fibers and Polymers, 2018, 19(1): 11-21. |
44 | Xue J, Liu L, Liao J, et al. Semi-interpenetrating polymer networks by azide-alkyne cycloaddition as novel anion exchange membranes[J]. Journal of Materials Chemistry A, 2018, 6(24): 11317-11326. |
45 | Chen C, Chen B, Hong R. Preparation and properties of alkaline anion exchange membrane with semi‐interpenetrating polymer networks based on poly (vinylidene fluoride-co-hexafluoropropylene)[J]. Journal of Applied Polymer Science, 2018, 135(5): 45775. |
46 | Zhang K, Mcdonald M B, Genina I E A, et al. A highly conductive and mechanically robust OH– conducting membrane for alkaline water electrolysis[J]. Chemistry of Materials, 2018, 30(18): 6420-6430. |
47 | Pan J, Zhu L, Han J, et al. Mechanically tough and chemically stable anion exchange membranes from rigid-flexible semi-interpenetrating networks[J]. Chemistry of Materials, 2015, 27(19): 6689-6698. |
48 | Guo D, Zhuo Y Z, Lai A N, et al. Interpenetrating anion exchange membranes using poly(1-vinylimidazole) as bifunctional crosslinker for fuel cells[J]. Journal of Membrane Science, 2016, 518: 295-304. |
49 |
Zeng L, He Q, Liao Y, et al. Anion exchange membrane based on interpenetrating polymer network with ultrahigh ion conductivity and excellent stability for alkaline fuel cell[J]. Research, 2020, DOI: 10.34133/2020/4794706.
DOI URL |
50 | Zhu L, Pan J, Wang Y, et al. Multication side chain anion exchange membranes[J]. Macromolecules, 2016, 49(3): 815-824. |
51 | Zhu L, Yu X, Hickner M A. Exploring backbone-cation alkyl spacers for multi-cation side chain anion exchange membranes[J]. Journal of Power Sources, 2018, 375: 433-441. |
52 | Han J, Zhu L, Pan J, et al. Elastic long-chain multication cross-linked anion exchange membranes[J]. Macromolecules, 2017, 50(8): 3323-3332. |
53 | Yang Y, Fu N, Dong Q, et al. Self‐aggregation to construct hydroxide highways in anion exchange membranes[J]. Advanced Materials Interfaces, 2020, 7(14): 1902143. |
54 | Cheng X, Wang J, Liao Y, et al. Enhanced conductivity of anion-exchange membrane by incorporation of quaternized cellulose nanocrystal[J]. ACS Applied Materials & Interfaces, 2018, 10(28): 23774-23782. |
55 | Hao J, Jiang Y, Gao X, et al. Functionalization of polybenzimidazole-crosslinked poly(vinylbenzyl chloride) with two cyclic quaternary ammonium cations for anion exchange membranes[J]. Journal of Membrane Science, 2018, 548: 1-10. |
56 | Chen D, Hickner M A. Ion clustering in quaternary ammonium functionalized benzylmethyl containing poly(arylene ether ketone)s[J]. Macromolecules, 2013, 46(23): 9270-9278. |
57 | Gong X, He G, Yan X, et al. Electrospun nanofiber enhanced imidazolium-functionalized polysulfone composite anion exchange membranes[J]. RSC Advances, 2015, 5(115): 95118-95125. |
58 | Lee W H, Kim Y S, Bae C. Robust hydroxide ion conducting poly(biphenyl alkylene)s for alkaline fuel cell membranes[J]. ACS Macro Letters, 2015, 4(8): 814-818. |
59 | Wang K, Gao L, Liu J, et al. Comb-shaped ether-free poly (biphenyl indole) based alkaline membrane[J]. Journal of Membrane Science, 2019, 588: 117216. |
60 | Olsson J S, Pham T H, Jannasch P. Tuning poly (arylene piperidinium) anion-exchange membranes by copolymerization, partial quaternization and crosslinking[J]. Journal of Membrane Science, 2019, 578: 183-195. |
61 | Hao J, Jiang Y, Gao X, et al. Functionalization of polybenzimidazole-crosslinked poly (vinylbenzyl chloride) with two cyclic quaternary ammonium cations for anion exchange membranes[J]. Journal of Membrane Science, 2018, 548: 1-10. |
62 | Chu X, Liu L, Huang Y, et al. Practical implementation of bis-six-membered N-cyclic quaternary ammonium cations in advanced anion exchange membranes for fuel cells: synthesis and durability[J]. Journal of Membrane Science, 2019, 578: 239-250. |
63 | Ren R, Zhang S, Miller H A, et al. Facile preparation of an ether-free anion exchange membrane with pendant cyclic quaternary ammonium groups[J]. ACS Applied Energy Materials, 2019, 2(7): 4576-4581. |
64 | Wang J, Zhao Y, Setzler B P, et al. Poly (aryl piperidinium) membranes and ionomers for hydroxide exchange membrane fuel cells[J]. Nature Energy, 2019, 4(5): 392-398. |
65 | Shukla G, Shahi V K. Poly (arylene ether ketone) copolymer grafted with amine groups containing a long alkyl chain by chloroacetylation for improved alkaline stability and conductivity of anion exchange membrane[J]. ACS Applied Energy Materials, 2018, 1(3): 1175-1182. |
66 | Li S, Zhu X, Liu D, et al. A highly durable long side-chain polybenzimidazole anion exchange membrane for AEMFC[J]. Journal of Membrane Science, 2018, 546: 15-21. |
67 | Li N, Wang L, Hickner M. Cross-linked comb-shaped anion exchange membranes with high base stability[J]. Chemical Communications, 2014, 50(31): 4092-4095. |
[1] | Jiaqi YUAN, Zheng LIU, Rui HUANG, Lefu ZHANG, Denghui HE. Investigation on energy conversion characteristics of vortex pump under bubble inflow [J]. CIESC Journal, 2023, 74(9): 3807-3820. |
[2] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[3] | Zefeng GE, Yuqing WU, Mingxun ZENG, Zhenting ZHA, Yuna MA, Zenghui HOU, Huiyan ZHANG. Effect of ash chemical components on biomass gasification properties [J]. CIESC Journal, 2023, 74(5): 2136-2146. |
[4] | Laiming LUO, Jin ZHANG, Zhibin GUO, Haining WANG, Shanfu LU, Yan XIANG. Simulation and experiment of high temperature polymer electrolyte membrane fuel cells stack in the 1—5 kW range [J]. CIESC Journal, 2023, 74(4): 1724-1734. |
[5] | Zhiguang QIAN, Yue FAN, Shixue WANG, Like YUE, Jinshan WANG, Yu ZHU. Effect of purging conditions on the impedance relaxation phenomenon and low temperature start-up of PEMFC [J]. CIESC Journal, 2023, 74(3): 1286-1293. |
[6] | Lingxin ZU, Rongting HU, Xin LI, Yudao CHEN, Guanglin CHEN. Carbon release products and denitrification bioavailability from chemical components of woody biomass [J]. CIESC Journal, 2023, 74(3): 1332-1342. |
[7] | Xiang GUO, Jinshuo QIAO, Zhenhua WANG, Wang SUN, Kening SUN. Progress of structure for carbon-fueled solid oxide fuel cells [J]. CIESC Journal, 2023, 74(1): 290-302. |
[8] | Huihuang FANG, Jinxing CHENG, Yu LUO, Chongqi CHEN, Chen ZHOU, Lilong JIANG. Recent progress on ammonia oxidation catalysts at anode and their performances in low-temperature direct ammonia alkaline exchange membrane fuel cells [J]. CIESC Journal, 2022, 73(9): 3802-3814. |
[9] | Tong ZHANG, Yang YANG, Dingding YE, Rong CHEN, Xun ZHU, Qiang LIAO. Effect of catalyst distribution on the performance characteristics of microfluidic fuel cell with flow-through anode [J]. CIESC Journal, 2022, 73(9): 4156-4162. |
[10] | Jiawang YONG, Qianqian ZHAO, Nenglian FENG. Fault diagnosis of proton exchange membrane fuel cell based on nonlinear dynamic model [J]. CIESC Journal, 2022, 73(9): 3983-3993. |
[11] | Wanchen ZHANG, Xiaoyang CHEN, Qiuqiu LYU, Qin ZHONG, Tenglong ZHU. Performance and durability of cobalt doped SrTi0.3Fe0.7O3-δ anode SOFC fueled with by-product gas from chemical industry [J]. CIESC Journal, 2022, 73(9): 4079-4086. |
[12] | Jian SHAO, Junzong FENG, Fengqi LIU, Yonggang JIANG, Liangjun LI, Jian FENG. Research progress on structural modulation and functionalized preparation of phenolic resin-based carbon microspheres [J]. CIESC Journal, 2022, 73(9): 3787-3801. |
[13] | Chengyi AI, Jinshuo QIAO, Zhenhuan WANG, Wang SUN, Kening SUN. Investigation on PrBaFe2O6-δ anode material with in-situ FeNi nanoparticle in direct carbon solid oxide fuel cell [J]. CIESC Journal, 2022, 73(8): 3708-3719. |
[14] | Lin WEI, Jian GUO, Zihao LIAO, Dafalla Ahmed Mohmed, Fangming JIANG. Influence of air flow rate on the performance of air cooled hydrogen fuel cell stack [J]. CIESC Journal, 2022, 73(7): 3222-3231. |
[15] | Hongrui ZHANG, Tian ZHANG, Xizi LONG, Xianning LI. Degradation characteristics of Cu-EDTA by coupling of photocatalysis and microbial fuel cell [J]. CIESC Journal, 2022, 73(5): 2149-2157. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||