CIESC Journal ›› 2020, Vol. 71 ›› Issue (10): 4773-4782.DOI: 10.11949/0438-1157.20200879
• Biochemical engineering and technology • Previous Articles Next Articles
Ming ZHANG(),Lehao LI,Rulong LI,Jianhua WU,Baogen SU,Guangdong WEN(),Qiwei YANG,Qilong REN
Received:
2020-07-03
Revised:
2020-09-01
Online:
2020-10-05
Published:
2020-10-05
Contact:
Guangdong WEN
张铭(),李乐豪,李如龙,吴剑骅,苏宝根,闻光东(),杨启炜,任其龙
通讯作者:
闻光东
作者简介:
张铭(1989—),男,博士,基金资助:
CLC Number:
Ming ZHANG, Lehao LI, Rulong LI, Jianhua WU, Baogen SU, Guangdong WEN, Qiwei YANG, Qilong REN. Treatment of biomass tar by CO2 plasma[J]. CIESC Journal, 2020, 71(10): 4773-4782.
张铭, 李乐豪, 李如龙, 吴剑骅, 苏宝根, 闻光东, 杨启炜, 任其龙. 二氧化碳等离子体处理生物质焦油[J]. 化工学报, 2020, 71(10): 4773-4782.
Add to citation manager EndNote|Ris|BibTeX
H2 | CO | CO2 | CH4 | C2H2 | ∑CxHy(x≥3) |
---|---|---|---|---|---|
15%~45% | 50%~80% | 0~10% | <0.01% | <0.01% | <0.01% |
Table 1 GC analyzing results of product gas
H2 | CO | CO2 | CH4 | C2H2 | ∑CxHy(x≥3) |
---|---|---|---|---|---|
15%~45% | 50%~80% | 0~10% | <0.01% | <0.01% | <0.01% |
Concentration/% | Q出/(m3/h) | SEC/ (kW·h/m3) | H2/CO | X/% | ||||
---|---|---|---|---|---|---|---|---|
H2 | CO | CO2 | CO | H2 | ||||
0.60 | 31.1 | 68.9 | 0 | 0.84 | 0.38 | 11.0 | 0.45 | 51.8 |
0.69 | 30.3 | 69.7 | 0 | 1.04 | 0.45 | 8.94 | 0.44 | 60.9 |
0.78 | 28.2 | 71.8 | 0 | 1.23 | 0.48 | 7.76 | 0.39 | 68.6 |
0.96 | 22.9 | 77.1 | 0 | 1.73 | 0.51 | 5.96 | 0.30 | 87.3 |
1.14 | 19.5 | 79.6 | 0.91 | 1.78 | 0.44 | 6.02 | 0.24 | 83.6 |
1.23 | 18.3 | 80.2 | 1.50 | 1.66 | 0.38 | 6.53 | 0.23 | 75.1 |
Table 2 Effects of CO2 flow rate on benzene gasification
Concentration/% | Q出/(m3/h) | SEC/ (kW·h/m3) | H2/CO | X/% | ||||
---|---|---|---|---|---|---|---|---|
H2 | CO | CO2 | CO | H2 | ||||
0.60 | 31.1 | 68.9 | 0 | 0.84 | 0.38 | 11.0 | 0.45 | 51.8 |
0.69 | 30.3 | 69.7 | 0 | 1.04 | 0.45 | 8.94 | 0.44 | 60.9 |
0.78 | 28.2 | 71.8 | 0 | 1.23 | 0.48 | 7.76 | 0.39 | 68.6 |
0.96 | 22.9 | 77.1 | 0 | 1.73 | 0.51 | 5.96 | 0.30 | 87.3 |
1.14 | 19.5 | 79.6 | 0.91 | 1.78 | 0.44 | 6.02 | 0.24 | 83.6 |
1.23 | 18.3 | 80.2 | 1.50 | 1.66 | 0.38 | 6.53 | 0.23 | 75.1 |
Input power/ kW | Concentration/% | Q出/(m3/h) | SEC/ (kW·h/m3) | H2/CO | X/% | |||
---|---|---|---|---|---|---|---|---|
H2 | CO | CO2 | CO | H2 | ||||
10.31 | 18.8 | 80.3 | 0.95 | 1.27 | 0.30 | 6.59 | 0.23 | 65.1 |
11.86 | 20.5 | 78.4 | 1.11 | 1.56 | 0.41 | 6.04 | 0.26 | 80.1 |
12.96 | 19.9 | 79.3 | 0.84 | 1.81 | 0.45 | 5.73 | 0.25 | 92.8 |
14.69 | 19.7 | 79.4 | 0.94 | 1.70 | 0.42 | 6.94 | 0.25 | 89.1 |
16.10 | 20.0 | 79.2 | 0.86 | 1.66 | 0.42 | 7.74 | 0.25 | 85.3 |
17.60 | 21.0 | 78.6 | 0.41 | 1.54 | 0.41 | 9.02 | 0.27 | 78.5 |
Table 3 Effects of input power on benzene gasification
Input power/ kW | Concentration/% | Q出/(m3/h) | SEC/ (kW·h/m3) | H2/CO | X/% | |||
---|---|---|---|---|---|---|---|---|
H2 | CO | CO2 | CO | H2 | ||||
10.31 | 18.8 | 80.3 | 0.95 | 1.27 | 0.30 | 6.59 | 0.23 | 65.1 |
11.86 | 20.5 | 78.4 | 1.11 | 1.56 | 0.41 | 6.04 | 0.26 | 80.1 |
12.96 | 19.9 | 79.3 | 0.84 | 1.81 | 0.45 | 5.73 | 0.25 | 92.8 |
14.69 | 19.7 | 79.4 | 0.94 | 1.70 | 0.42 | 6.94 | 0.25 | 89.1 |
16.10 | 20.0 | 79.2 | 0.86 | 1.66 | 0.42 | 7.74 | 0.25 | 85.3 |
17.60 | 21.0 | 78.6 | 0.41 | 1.54 | 0.41 | 9.02 | 0.27 | 78.5 |
No. | Retention time/min① | Retention time ST/min② | Compound | Molecular formula | Mole fraction/% |
---|---|---|---|---|---|
1 | 2.336 | 2.334 | 苯并呋喃 | C8H6O | 2.10 |
2 | 3.451 | 3.448 | 萘 | C10H8 | 31.52 |
3 | 4.059 | 4.065 | 2-甲基萘 | C11H10 | 6.23 |
4 | 4.142 | 4.168 | 1-甲基萘 | C11H10 | 4.24 |
5 | 4.459 | 4.445 | 联苯 | C12H10 | 1.11 |
6 | 4.713 | 4.697 | 2-乙烯基萘 | C12H10 | 0.98 |
7 | 4.810 | 4.808 | 苊烯 | C12H8 | 8.26 |
8 | 5.096 | 5.073 | 苯并呋喃 | C12H8O | 0.63 |
9 | 5.342 | 5.332 | 芴 | C13H10 | 3.92 |
10 | 6.028 | 6.016 | 菲 | C14H10 | 4.62 |
11 | 6.079 | 6.052 | 蒽 | C14H10 | 1.80 |
12 | 7.148 | 7.139 | 芘 | C16H10 | 1.92 |
Table 4 Identifiable component analysis of biomass tar by GC/MS
No. | Retention time/min① | Retention time ST/min② | Compound | Molecular formula | Mole fraction/% |
---|---|---|---|---|---|
1 | 2.336 | 2.334 | 苯并呋喃 | C8H6O | 2.10 |
2 | 3.451 | 3.448 | 萘 | C10H8 | 31.52 |
3 | 4.059 | 4.065 | 2-甲基萘 | C11H10 | 6.23 |
4 | 4.142 | 4.168 | 1-甲基萘 | C11H10 | 4.24 |
5 | 4.459 | 4.445 | 联苯 | C12H10 | 1.11 |
6 | 4.713 | 4.697 | 2-乙烯基萘 | C12H10 | 0.98 |
7 | 4.810 | 4.808 | 苊烯 | C12H8 | 8.26 |
8 | 5.096 | 5.073 | 苯并呋喃 | C12H8O | 0.63 |
9 | 5.342 | 5.332 | 芴 | C13H10 | 3.92 |
10 | 6.028 | 6.016 | 菲 | C14H10 | 4.62 |
11 | 6.079 | 6.052 | 蒽 | C14H10 | 1.80 |
12 | 7.148 | 7.139 | 芘 | C16H10 | 1.92 |
Concentration/% | Q出/(m3/h) | SEC/ (kW·h/m3) | H2/CO | ||||
---|---|---|---|---|---|---|---|
H2 | CO | CO2 | CO | H2 | |||
0.43 | 30.8 | 69.2 | 0 | 0.67 | 0.30 | 14.1 | 0.44 |
0.51 | 30.2 | 69.8 | 0 | 0.87 | 0.38 | 10.9 | 0.43 |
0.60 | 26.0 | 72.8 | 1.26 | 1.02 | 0.36 | 9.83 | 0.36 |
0.69 | 24.7 | 70.5 | 4.81 | 1.10 | 0.39 | 9.13 | 0.35 |
0.86 | 20.6 | 74.3 | 5.05 | 1.21 | 0.34 | 8.80 | 0.28 |
0.95 | 17.8 | 73.9 | 8.34 | 1.19 | 0.29 | 9.22 | 0.24 |
Table 5 Effects of CO2 flow rate on the gasification of the mixture of biomass tar and benzene
Concentration/% | Q出/(m3/h) | SEC/ (kW·h/m3) | H2/CO | ||||
---|---|---|---|---|---|---|---|
H2 | CO | CO2 | CO | H2 | |||
0.43 | 30.8 | 69.2 | 0 | 0.67 | 0.30 | 14.1 | 0.44 |
0.51 | 30.2 | 69.8 | 0 | 0.87 | 0.38 | 10.9 | 0.43 |
0.60 | 26.0 | 72.8 | 1.26 | 1.02 | 0.36 | 9.83 | 0.36 |
0.69 | 24.7 | 70.5 | 4.81 | 1.10 | 0.39 | 9.13 | 0.35 |
0.86 | 20.6 | 74.3 | 5.05 | 1.21 | 0.34 | 8.80 | 0.28 |
0.95 | 17.8 | 73.9 | 8.34 | 1.19 | 0.29 | 9.22 | 0.24 |
含水率/% | Concentration/% | SEC/ (kW·h/m3) | H2/CO | |||
---|---|---|---|---|---|---|
H2 | CO | CO2 | ||||
13.3 | 0.69 | 24.7 | 70.5 | 4.81 | 9.13 | 0.35 |
27.1 | 0.43 | 37.3 | 61.9 | 0.81 | 8.88 | 0.60 |
46.0 | 0.43 | 42.8 | 53.7 | 3.58 | 9.11 | 0.80 |
Table 6 Comparison of optimal gasification results among mixtures with different water contents
含水率/% | Concentration/% | SEC/ (kW·h/m3) | H2/CO | |||
---|---|---|---|---|---|---|
H2 | CO | CO2 | ||||
13.3 | 0.69 | 24.7 | 70.5 | 4.81 | 9.13 | 0.35 |
27.1 | 0.43 | 37.3 | 61.9 | 0.81 | 8.88 | 0.60 |
46.0 | 0.43 | 42.8 | 53.7 | 3.58 | 9.11 | 0.80 |
1 | 王久臣, 戴林, 田宜水, 等. 中国生物质能产业发展现状及趋势分析[J]. 农业工程学报, 2007, 23(9): 276-282. |
Wang J C, Dai L, Tian Y S, et al. Analysis of the development status and trends of biomass energy industry in China [J]. Transactions of the CSAE, 2007, 23(9): 276-282. | |
2 | 李景明, 薛梅. 中国生物质能利用现状与发展前景[J]. 农业科技管理, 2010, 29(2): 1-4. |
Li J M, Xue M. Current status and development prospects of biomass energy utilization in China [J]. Management of Agricultural Science and Technology Energy, 2010, 29(2): 1-4. | |
3 | 许小骏. 林业生物质能源发展现状及展望[J]. 山西农业科学, 2008, 36(8): 88-89. |
Xu X J. Development and prospects of forestry biological energy [J]. Journal of Shanxi Agricultural Sciences, 2008, 36(8): 88-89. | |
4 | 陈冠益, 高文学, 颜蓓蓓, 等. 生物质气化技术研究现状与发展[J]. 燃气气源与加工利用, 2006, 26(7): 20-26. |
Chen G Y, Gao W X, Yan B B, et al. Present research status and development of biomass gasification technologies [J]. Gas Source and Process and Utilization, 2006, 26(7): 20-26. | |
5 | 边轶, 刘石彩, 简相坤. 生物质热解焦油的性质与化学利用研究现状[J]. 生物质化学工程, 2011, 45(2): 51-55. |
Bian Y, Liu S C, Jian X K. The state art of view of research progress on characteristics and chemical utilization of tar from biomass pyrolysis [J]. Biomass Chemical Engineering, 2011, 45(2): 51-55. | |
6 | 鲍振博, 靳登超, 刘玉乐, 等. 生物质气化中焦油的产生及处理方法[J]. 农机化研究, 2011, 33(8): 172-176. |
Bao Z B, Jin D C, Liu Y L, et al. Generation and treatment of tar in biomass gasification gas [J]. Journal of Agricultural Mechanization Research, 2011, 33(8): 172-176. | |
7 | 吴文广, 罗永浩, 陈祎, 等. 生物质焦油净化方法研究进展[J]. 工业加热, 2008, 37(2): 1-5. |
Wu W G, Luo Y H, Chen Y, et al. The progress in tar reduction method research [J]. Industrial Heating, 2008, 37(2): 1-5. | |
8 | 袁惠新, 王宁, 付双成, 等. 生物质焦油的特性及其去除方法的研究现状[J]. 过滤与分离, 2011, (3): 45-48. |
Yuan H X, Wang N, Fu S C, et al. Research on characteristics of biomass tar and the methods of its removal [J]. Journal of Filtration & Separation, 2011, (3): 45-48. | |
9 | 吴悠, 赵立欣, 孟海波, 等. 生物质热解焦油脱除方法研究进展[J]. 化工环保, 2016, 36(1): 17-21. |
Wu Y, Zhao L X, Meng H B, et al. Research progress on removal methods of biomass pyrolysis tar[J]. Chemical Environmental Protection, 2016, 36(1): 17-21. | |
10 | 马帅, 胡笑颖, 董长青, 等. 生物质焦油模型化合物脱除研究进展[J]. 林产化学与工业, 2019, 39(4): 1-8. |
Ma S, Hu X Y, Dong C Q, et al. Research progress in the removal of biomass tar model compounds[J]. Chemistry and Industry of Forest Products. 2019, 39(4): 1-8. | |
11 | 孙云娟, 蒋剑春. 生物质气化过程中焦油的去除方法综述[J]. 生物质化学工程, 2006, 40(2): 31-35. |
Sun Y J, Jiang J C. A review of measures for tar elimination in biomass gasification processes [J]. Biomass Chemical Engineering, 2006, 40(2): 31-35. | |
12 | 鲍振博, 靳登超, 刘玉乐, 等. 生物质气化中焦油的产生及其危害性[J]. 安徽农业科学, 2011, 39(4): 2243-2244. |
Bao Z B, Jin D C, Liu Y L, et al. Tar generation and its harmfulness in the process of biomass gasification [J]. Journal of Anhui Agricultural Sciences, 2011, 39(4): 2243-2244. | |
13 | 刘玉环, 朱普琪, 王允圃, 等. 生物质气化焦油处理技术的最新研究进展[J]. 现代化工, 2013, 33(11): 24-29. |
Liu Y H, Zhu P Q, Wang Y P, et al. Advance in tar removal technology of biomass gasification [J]. Modern Chemical Industry, 2013, 33(11): 24-29. | |
14 | Rabou L. Biomass tar recycling and destruction in a CFB gasifier [J]. Fuel, 2005, 84(5): 577-581. |
15 | Seshadri K S, Shamsi A. Effects of temperature, pressure, and carrier gas on the cracking of coal tar over a char-dolomite mixture and calcined dolomite in a fixed-bed reactor [J]. Industrial & Engineering Chemistry Research, 1998, 37(10): 3830-3837. |
16 | Heo D H, Lee R, Hwang J H, et al. The effect of addition of Ca, K and Mn over Ni-based catalyst on steam reforming of toluene as model tar compound [J]. Catalysis Today, 2016, 265: 95-102. |
17 | Behnia I, Yuan Z, Charpentier P, et al. Production of methane and hydrogen via supercritical water gasification of renewable glucose at a relatively low temperature: effects of metal catalysts and supports [J]. Fuel Processing Technology, 2016, 143: 27-34. |
18 | Oh G, Park S Y, Seo M W, et al. Ni/Ru–Mn/Al2O3 catalysts for steam reforming of toluene as model biomass tar [J]. Renewable Energy, 2016, 86: 841-847. |
19 | Nestler F, Burhenne L, Amtenbrink M J, et al. Catalytic decomposition of biomass tars: the impact of wood char surface characteristics on the catalytic performance for naphthalene removal [J]. Fuel Processing Technology, 2016, 145: 31-41. |
20 | Nair S A, Pemen A J M, Yan K, et al. Tar removal from biomass-derived fuel gas by pulsed corona discharges [J]. Fuel Processing Technology, 2003, 84(1): 161-173. |
21 | Fourcault A, Marias F, Michou U. Modelling of thermal removal of tars in a high temperature stage fed by a plasma torch [J]. Biomass and Bioenergy, 2010, 34(9): 1363-1374. |
22 | Nunnally T, Tsangaris A, Rabinovich A, et al. Gliding arc plasma oxidative steam reforming of a simulated syngas containing naphthalene and toluene [J]. International Journal of Hydrogen Energy, 2014, 39(23): 11976-11989. |
23 | Chun Y N, Kim S C, Yoshikawa K. Decomposition of benzene as a surrogate tar in a gliding arc plasma [J]. Environmental Progress & Sustainable Energy, 2013, 32(3): 837-845. |
24 | Jzmroz P, Kordylewski W, Wnukowski M. Microwave plasma application in decomposition and steam reforming of model tar compounds [J]. Fuel Processing Technology, 2018, 169: 1-14. |
25 | Rodrigo M E, Manoel F M N, Argemiro S S S, et al. Tar reforming under a microwave plasma torch [J]. Energy & Fuels, 2013, 27: 1174-1181. |
26 | Zhu T, Li J, Jin Y, et al. Decomposition of benzene by non-thermal plasma processing: photocatalyst and ozone effect [J]. International Journal of Environmental Science & Technology, 2008, 5(3): 375-384. |
27 | Saleem F, Zhang K, Harvety A. Role of CO2 in the conversion of toluene as a tar surrogate in a non-thermal plasma dielectric barrier discharge reactor[J]. Energy & Fuels, 2018, 32(4): 5164-5170. |
28 | Liu L, Wang Q, Song J, et al. Dry reforming of model biomass pyrolysis products to syngas by dielectric barrier discharge plasma[J]. International Journal of Hydrogen Energy, 2018, 43(22): 10281-10293. |
29 | Saleem F, Zhang K, Harvety A. Temperature dependence of non-thermal plasma assisted hydrocracking of toluene to lower hydrocarbons in a dielectric barrier discharge reactor[J]. Chemical Engineering Journal, 2019, 356: 1062-1069. |
30 | Wang B, Yao S, Peng Y, et al. Toluene removal over TiO2-BaTiO3 catalysts in an atmospheric dielectric barrier discharge[J]. Journal of Environmental Chemical Engineering, 2018, 6(4): 3819-3826. |
31 | 王青. 微波诱导金属放电催化转化生物质焦油的研究[D]. 济南: 山东大学, 2018. |
Wang Q. Study on catalytic conversion of biomass tar by microwave induced metal discharge[D]. Jinan: Shandong University, 2018. | |
32 | 甘蓉丽, 罗光前, 许洋, 等. 低温等离子体协同铜铈催化剂脱除甲苯[J]. 化工进展, 2018, 37(9): 3416-3423. |
Gan R L, Luo G Q, Xu Y, et al. Low temperature plasma collaborative copper cerium catalyst removal of toluene[J]. Chemical Industry and Engineering Progress, 2018, 37(9): 3416-3423. | |
33 | Devi L, Ptasinski K J, Janssen F J J G, et al. Catalytic decomposition of biomass tars: use of dolomite and untreated olivine [J]. Renewable Energy, 2005, 30(4): 565-587. |
34 | Chun Y N, Kim S C, Yoshikawa K. Destruction of anthracene using a gliding arc plasma reformer [J]. Korean Journal of Chemical Engineering, 2011, 28(8): 1713-1720. |
[1] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[2] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[3] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[4] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[5] | Chen HAN, Youmin SITU, Bin ZHU, Jianliang XU, Xiaolei GUO, Haifeng LIU. Study of reaction and flow characteristics in multi-nozzle pulverized coal gasifier with co-processing of wastewater [J]. CIESC Journal, 2023, 74(8): 3266-3278. |
[6] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[7] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[8] | Zefeng GE, Yuqing WU, Mingxun ZENG, Zhenting ZHA, Yuna MA, Zenghui HOU, Huiyan ZHANG. Effect of ash chemical components on biomass gasification properties [J]. CIESC Journal, 2023, 74(5): 2136-2146. |
[9] | Chenxi LI, Yongfeng LIU, Lu ZHANG, Haifeng LIU, Jin’ou SONG, Xu HE. Quantum chemical analysis of n-heptane combustion mechanism under O2/CO2 atmosphere [J]. CIESC Journal, 2023, 74(5): 2157-2169. |
[10] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
[11] | Bimao ZHOU, Shisen XU, Xiaoxiao WANG, Gang LIU, Xiaoyu LI, Yongqiang REN, Houzhang TAN. Effect of burner bias angle on distribution characteristics of gasifier slag layer [J]. CIESC Journal, 2023, 74(5): 1939-1949. |
[12] | Bingguo ZHU, Jixiang HE, Jinliang XU, Bin PENG. Heat transfer characteristics of supercritical pressure CO2 in diverging/converging tube under cooling conditions [J]. CIESC Journal, 2023, 74(3): 1062-1072. |
[13] | Renchu HE, Zhaohui ZHANG, Minglei YANG, Cong WANG, Zhenhao XI. Online optimization of gasoline blending considering carbon emissions [J]. CIESC Journal, 2023, 74(2): 818-829. |
[14] | Xin LI, Shaojuan ZENG, Kuilin PENG, Lei YUAN, Xiangping ZHANG. Research progress and tendency of CO2 electrocatalytic reduction to syngas [J]. CIESC Journal, 2023, 74(1): 313-329. |
[15] | Chenyang SHEN, Kaihang SUN, Yueping ZHANG, Changjun LIU. Research progresses on In2O3 and In2O3 supported metal catalysts for CO2 hydrogenation to methanol [J]. CIESC Journal, 2023, 74(1): 145-156. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||