CIESC Journal ›› 2021, Vol. 72 ›› Issue (1): 334-350.DOI: 10.11949/0438-1157.20200920
• Reviews and monographs • Previous Articles Next Articles
HUANG Qingbo(),LIU Gongping(),JIN Wanqin
Received:
2020-07-09
Revised:
2020-08-14
Online:
2021-01-05
Published:
2021-01-05
Contact:
LIU Gongping
通讯作者:
刘公平
作者简介:
黄清波(1996—),男,硕士研究生,基金资助:
CLC Number:
HUANG Qingbo, LIU Gongping, JIN Wanqin. Recent progress of membrane materials for mono-/di-valent ions separation[J]. CIESC Journal, 2021, 72(1): 334-350.
黄清波, 刘公平, 金万勤. 一/二价离子分离膜材料研究进展[J]. 化工学报, 2021, 72(1): 334-350.
Add to citation manager EndNote|Ris|BibTeX
1 | Azamat J, Balaei A, Gerami M. A theoretical study of nanostructure membranes for separating Li+ and Mg2+ from Cl-[J]. Computational Materials Science, 2016, 113: 66-74. |
2 | Ge L, Wu B, Yu D, et al. Monovalent cation perm-selective membranes (MCPMs): new developments and perspectives[J]. Chinese Journal of Chemical Engineering, 2017, 25(11): 1606-1615. |
3 | Nie X Y, Sun S Y, Song X, et al. Further investigation into lithium recovery from salt lake brines with different feed characteristics by electrodialysis[J]. Journal of Membrane Science, 2017, 530: 185-191. |
4 | 孟庆伟, 张峰, 陈璐, 等. 离子筛吸附与陶瓷膜耦合用于盐湖卤水提锂[J]. 化工学报, 2017, 68(5): 1899-1905. |
Meng Q W, Zhang F, Chen L, et al. Lithium recovery from Qarham brine using adsorption-membrane separation hybrid system[J]. CIESC Journal, 2017, 68(5): 1899-1905. | |
5 | 徐萍, 钱晓明, 郭昌盛, 等. 用于盐湖卤水镁锂分离的纳滤技术研究进展[J]. 材料导报, 2019, 33(2A): 410-417. |
Xu P, Qian X M, Guo C S, et al. Nanofiltration technology used for separation of magnesium and lithium from salt lake brine: a survey[J]. Materials Review, 2019, 33(2A): 410-417. | |
6 | Liu G, Zhao Z, Ghahreman A. Novel approaches for lithium extraction from salt-lake brines: a review[J]. Hydrometallurgy, 2019, 187: 81-100. |
7 | Lin X, Shamsaei E, Kong B, et al. Asymmetrically porous anion exchange membranes with an ultrathin selective layer for rapid acid recovery[J]. Journal of Membrane Science, 2016, 510: 437-446. |
8 | 华伟, 李传润, 张旭, 等. 卷式扩散渗析膜法回收H2SO4/FeSO4体系中的H2SO4[J]. 化工进展, 2012, 31(1): 222-226. |
Hua W, Li C R, Zhang X, et al. Separation of H2SO4/FeSO4 mixture by spiral wound diffusion dialysis[J]. Chemical Industry and Engineering Progress, 2012, 31(1): 222-226. | |
9 | Wang, Q, Wang, Y, Chen, B Z, et al. Designing high-performance nanofiltration membranes for high-salinity separation of sulfate and chloride in the chlor-alkali process[J]. Industrial & Engineering Chemistry Research, 2019, 58(27): 12280-12290. |
10 | 刘杰, 袁俊生, 纪志永, 等. 纳滤法高浓盐水精制及传质性能[J]. 水处理技术, 2016, 42(4): 17-20. |
Liu J, Yuan J S, Ji Z Y, et al. Study on refining of high salinity solution by nanofiltration and its mass transfer performance[J]. Technology of Water Treatment, 2016, 42(4): 17-20. | |
11 | Kianfar F, Kianfar E. Synthesis of isophthalic acid/aluminum nitrate thin film nanocomposite membrane for hard water softening[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2019, 29(6): 2176-2185. |
12 | Lado J J, Zornitta R L, Vazquez Rodriguez I, et al. Sugarcane biowaste-derived biochars as capacitive deionization electrodes for brackish water desalination and water-softening applications[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(23): 18992-19004. |
13 | Swain B. Separation and purification of lithium by solvent extraction and supported liquid membrane, analysis of their mechanism: a review[J]. Journal of Chemical Technology and Biotechnology, 2016, 91(10): 2549-2562. |
14 | Wang S, Li P, Zhang X, et al. Selective adsorption of lithium from high Mg-containing brines using HxTiO3 ion sieve[J]. Hydrometallurgy, 2017, 174: 21-28. |
15 | Kim S, Lee J, Kim S, et al. Electrochemical lithium recovery with a LiMn2O4-zinc battery system using zinc as a negative electrode[J]. Energy Technology, 2018, 6(2): 340-344. |
16 | Li X, Mo Y, Qing W, et al. Membrane-based technologies for lithium recovery from water lithium resources: a review[J]. Journal of Membrane Science, 2019, 591: 117317. |
17 | Gin D L, Noble R D. Designing the next generation of chemical separation membranes[J]. Science, 2011, 332(6030): 674-676. |
18 | Liu C, Shi L, Wang R. Crosslinked layer-by-layer polyelectrolyte nanofiltration hollow fiber membrane for low-pressure water softening with the presence of SO42- in feed water[J]. Journal of Membrane Science, 2015, 486: 169-176. |
19 | Sata T, Sata T, Yang W K. Studies on cation-exchange membranes having permselectivity between cations in electrodialysis[J]. Journal of Membrane Science, 2002, 206(1/2): 31-60. |
20 | Liao J, Yu X, Pan N, et al. Amphoteric ion-exchange membranes with superior mono-/bi-valent anion separation performance for electrodialysis applications[J]. Journal of Membrane Science, 2019, 577: 153-164. |
21 | Yuan B, Li P, Wang P, et al. Novel aliphatic polyamide membrane with high mono-/divalent ion selectivity, excellent Ca2+, Mg2+ rejection, and improved antifouling properties[J]. Separation and Purification Technology, 2019, 224: 443-455. |
22 | Cheng J, Shi W, Zhang L, et al. A novel polyester composite nanofiltration membrane formed by interfacial polymerization of pentaerythritol (PE) and trimesoyl chloride (TMC)[J]. Applied Surface Science, 2017, 416: 152-159. |
23 | Xu P, Wang W, Qian X, et al. Positive charged PEI-TMC composite nanofiltration membrane for separation of Li+ and Mg2+ from brine with high Mg2+/Li+ ratio[J]. Desalination, 2019, 449: 57-68. |
24 | Ge L, Wu B, Li Q, et al. Electrodialysis with nanofiltration membrane (EDNF) for high-efficiency cations fractionation[J]. Journal of Membrane Science, 2016, 498: 192-200. |
25 | Zhang H, Ding R, Zhang Y, et al. Stably coating loose and electronegative thin layer on anion exchange membrane for efficient and selective monovalent anion transfer[J]. Desalination, 2017, 410: 55-65. |
26 | Hou L, Wu B, Yu D, et al. Asymmetric porous monovalent cation perm-selective membranes with an ultrathin polyamide selective layer for cations separation[J]. Journal of Membrane Science, 2018, 557: 49-57. |
27 | Wang J J, Yang H C, Wu M B, et al. Nanofiltration membranes with cellulose nanocrystals as an interlayer for unprecedented performance[J]. Journal of Materials Chemistry A, 2017, 5(31): 16289-16295. |
28 | Guo C, Li N, Qian X, et al. Ultra-thin double Janus nanofiltration membrane for separation of Li+ and Mg2+: "Drag" effect from carboxyl-containing negative interlayer[J]. Separation and Purification Technology, 2020, 230: 115567. |
29 | Gong G, Wang P, Zhou Z, et al. New insights into the role of an interlayer for the fabrication of highly selective and permeable thin-film composite nanofiltration membrane[J]. ACS Applied Materials & Interfaces, 2019, 11(7): 7349-7356. |
30 | Hao L, Liao J, Jiang Y, et al. "Sandwich"-like structure modified anion exchange membrane with enhanced monovalent selectivity and fouling resistant[J]. Journal of Membrane Science, 2018, 556: 98-106. |
31 | Rijnaarts T, Reurink D M, Radmanesh F, et al. Layer-by-layer coatings on ion exchange membranes: effect of multilayer charge and hydration on monovalent ion selectivities[J]. Journal of Membrane Science, 2019, 570: 513-521. |
32 | Lu O, Malaisamy R, Bruening M L. Multilayer polyelectrolyte films as nanofiltration membranes for separating monovalent and divalent cations[J]. Journal of Membrane Science, 2008, 310(1/2): 76-84. |
33 | Cheng C, Yaroshchuk A, Bruening M L. Fundamentals of selective ion transport through multilayer polyelectrolyte membranes[J]. Langmuir, 2013, 29(6): 1885-1892. |
34 | Cheng C, White N, Shi H, et al. Cation separations in electrodialysis through membranes coated with polyelectrolyte multilayers[J]. Polymer, 2014, 55(6): 1397-1403. |
35 | White N, Misovich M, Yaroshchuk A, et al. Coating of nafion membranes with polyelectrolyte multilayers to achieve high monovalent/divalent cation electrodialysis selectivities[J]. ACS Applied Materials & Interfaces, 2015, 7(12): 6620-6628. |
36 | White N, Misovich M, Alemayehu E, et al. Highly selective separations of multivalent and monovalent cations in electrodialysis through Nafion membranes coated with polyelectrolyte multilayers[J]. Polymer, 2016, 103: 478-485. |
37 | Zhu Y, Ahmad M, Yang L, et al. Adsorption of polyelectrolyte multilayers imparts high monovalent/divalent cation selectivity to aliphatic polyamide cation-exchange membranes[J]. Journal of Membrane Science, 2017, 537: 177-185. |
38 | Afsar N U, Shehzad M A, Irfan M, et al. Cation exchange membrane integrated with cationic and anionic layers for selective ion separation via electrodialysis[J]. Desalination, 2019, 458: 25-33. |
39 | Li J, Yuan S, Wang J, et al. Mussel-inspired modification of ion exchange membrane for monovalent separation[J]. Journal of Membrane Science, 2018, 553: 139-150. |
40 | Jiang C, Zhang D, Muhammad A S, et al. Fouling deposition as an effective approach for preparing monovalent selective membranes[J]. Journal of Membrane Science, 2019, 580: 327-335. |
41 | Du Y, Qiu W Z, Lv Y, et al. Nanofiltration membranes with narrow pore size distribution via contra-diffusion-induced mussel-inspired chemistry[J]. ACS Applied Materials & Interfaces, 2016, 8(43): 29696-29704. |
42 | Zhang D, Jiang C, Li Y, et al. Electro-driven in situ construction of functional layer using amphoteric molecule: the role of tryptophan in ion sieving[J]. ACS Applied Materials & Interfaces, 2019, 11(40): 36626-36637. |
43 | Li W, Shi C, Zhou A, et al. A positively charged composite nanofiltration membrane modified by EDTA for LiCl/MgCl2 separation[J]. Separation and Purification Technology, 2017, 186: 233-242. |
44 | Ji W, Afsar N U, Wu B, et al. In-situ crosslinked SPPO/PVA composite membranes for alkali recovery via diffusion dialysis[J]. Journal of Membrane Science, 2019, 590: 117267. |
45 | Afsar N U, Ji W, Wu B, et al. SPPO-based cation exchange membranes with a positively charged layer for cation fractionation[J]. Desalination, 2019, 472: 114145. |
46 | Hou L, Pan J, Yu D, et al. Nanofibrous composite membranes (NFCMs) for mono/divalent cations separation[J]. Journal of Membrane Science, 2017, 528: 243-250. |
47 | Li J, Zhu J, Wang J, et al. Charge-assisted ultrafiltration membranes for monovalent ions separation in electrodialysis[J]. Journal of Applied Polymer Science, 2018, 135(24): 45692. |
48 | Irfan M, Wang Y, Xu T. Novel electrodialysis membranes with hydrophobic alkyl spacers and zwitterion structure enable high monovalent/divalent cation selectivity[J]. Chemical Engineering Journal, 2020, 383: 123171. |
49 | Xiao H F, Chu C H, Xu W T, et al. Amphibian-inspired amino acid ionic liquid functionalized nanofiltration membranes with high water permeability and ion selectivity for pigment wastewater treatment[J]. Journal of Membrane Science, 2019, 586: 44-52. |
50 | He Y, Ge L, Ge Z, et al. Monovalent cations permselective membranes with zwitterionic side chains[J]. Journal of Membrane Science, 2018, 563: 320-325. |
51 | Irfan M, Xu T, Ge L, et al. Zwitterion structure membrane provides high monovalent/divalent cation electrodialysis selectivity: investigating the effect of functional groups and operating parameters[J]. Journal of Membrane Science, 2019, 588: 117211. |
52 | Zhou, M Y, Fang L F, Sun C C, et al. Pore size tailoring from ultrafiltration to nanofiltration with PVC-g-PDMA via rapid immersion thermal annealing[J]. Journal of Membrane Science, 2019, 572: 401-409. |
53 | Ge L, Wu L, Wu B, et al. Preparation of monovalent cation selective membranes through annealing treatment[J]. Journal of Membrane Science, 2014, 459: 217-222. |
54 | Shehzad M A, Wang Y, Yasmin A, et al. Biomimetic nanocones that enable high ion permselectivity[J]. Angewandte Chemie-International Edition, 2019, 58(36): 12646-12654. |
55 | Lin C E, Fang L F, Du S Y, et al. A novel positively charged nanofiltration membrane formed via simultaneous cross-linking/quaternization of poly(m-phenylene 5 isophthalamide)/polyethyleneimine blend membrane[J]. Separation and Purification Technology, 2019, 212: 101-109. |
56 | Sheng F, Hou L, Wang X, et al. Electro-nanofiltration membranes with positively charged polyamide layer for cations separation[J]. Journal of Membrane Science, 2020, 594: 117453. |
57 | Du Y, Lv Y, Qiu W Z, et al. Nanofiltration membranes with narrowed pore size distribution via pore wall modification[J]. Chemical Communications, 2016, 52(55): 8589-8592. |
58 | Wen Q, Yan D, Liu F, et al. Highly selective ionic transport through subnanometer pores in polymer films[J]. Advanced Functional Materials, 2016, 26(32): 5796-5803. |
59 | Wang P, Wang M, Liu F, et al. Ultrafast ion sieving using nanoporous polymeric membranes[J]. Nature Communications, 2018, 9(1): 569. |
60 | Shen Q, Xu S J, Xu Z L, et al. Novel thin-film nanocomposite membrane with water-soluble polyhydroxylated fullerene for the separation of Mg2+/Li+ aqueous solution[J]. Journal of Applied Polymer Science, 2019, 136(41): 48029. |
61 | Tang Y J, Shen B J, Huang B Q, et al. High permselectivity thin-film composite nanofiltration membranes with 3D microstructure fabricated by incorporation of beta cyclodextrin[J]. Separation and Purification Technology, 2019, 227: 115718. |
62 | An S, Liu J, Wang J, et al. Synthesis and characterization of organic-inorganic cross-linked membrane for the separation of mono-charged and double charged ions using UV irradiation[J]. Desalination, 2019, 464: 8-17. |
63 | Villalobos L F, Huang T, Peinemann K V. Cyclodextrin films with fast solvent transport and shape-selective permeability[J]. Advanced Materials, 2017, 29(26): 1606641. |
64 | Yao Z, Guo H, Yang Z, et al. Preparation of nanocavity-contained thin film composite nanofiltration membranes with enhanced permeability and divalent to monovalent ion selectivity[J]. Desalination, 2018, 445: 115-122. |
65 | Li J, Zhu J, Yuan S, et al. Mussel-inspired monovalent selective cation exchange membranes containing hydrophilic MIL53(Al) framework for enhanced ion flux[J]. Industrial & Engineering Chemistry Research, 2018, 57(18): 6275-6283. |
66 | Ji Y L, An Q F, Guo Y S, et al. Bio-inspired fabrication of high perm-selectivity and anti-fouling membranes based on zwitterionic polyelectrolyte nanoparticles[J]. Journal of Materials Chemistry A, 2016, 4(11): 4224-4231. |
67 | Cheng L, Liu G, Jin W. Recent progress in two-dimensional-material membranes for gas separation[J]. Acta Physico-Chimica Sinica, 2019, 35(10): 1090-1098. |
68 | Liu G P, Jin W Q, Xu N P. Two-dimensional-material membranes: a new family of high-performance separation membranes[J]. Angewandte Chemie-International Edition, 2016, 55(43): 13384-13397. |
69 | Liu G P, Jin W Q, Xu N P. Graphene-based membranes[J]. Chemical Society Reviews, 2015, 44(15): 5016-5030. |
70 | Liang F, Liu Q, Zhao J, et al. Ultrafast water-selective permeation through graphene oxide membrane with water transport promoters[J]. AIChE Journal, 2019, 66(2): 16812. |
71 | Shen J, Liu G Z, Huang K, et al. Subnanometer two-dimensional graphene oxide channels for ultrafast gas sieving[J]. ACS Nano, 2016, 10(3): 3398-3409. |
72 | Wei Y, Wang J, Li H, et al. Partially reduced graphene oxide and chitosan nanohybrid membranes for selective retention of divalent cations[J]. RSC Advances, 2018, 8(25): 13656-13663. |
73 | Ran J, Hu M, Yu D, et al. Graphene oxide embedded "three-phase" membrane to beat "trade-off" in acid recovery[J]. Journal of Membrane Science, 2016, 520: 630-638. |
74 | Zhao Y, Shi W, van der Bruggen B, et al. Tunable nanoscale interlayer of graphene with symmetrical polyelectrolyte multilayer architecture for lithium extraction[J]. Advanced Materials Interfaces, 2018, 5(6): 1701449. |
75 | Zhao Y, Zhu J, Li J, et al. Robust multilayer graphene-organic frameworks for selective separation of monovalent anions[J]. ACS Applied Materials & Interfaces, 2018, 10(21): 18426-18433. |
76 | Zhang H Z, Xu Z L, Ding H, et al. Positively charged capillary nanofiltration membrane with high rejection for Mg2+ and Ca2+ and good separation for Mg2+and Li+[J]. Desalination, 2017, 420: 158-166. |
77 | Liu T Y, Yuan H G, Li Q, et al. Ion-responsive channels of zwitterion-carbon nanotube membrane for rapid water permeation and ultrahigh mono-/multivalent ion selectivity[J]. ACS Nano, 2015, 9(7): 7488-7496. |
78 | Zheng J, Li M, Yao Y, et al. Zwitterionic carbon nanotube assisted thin-film nanocomposite membranes with excellent efficiency for separation of mono/divalent ions from brackish water[J]. Journal of Materials Chemistry A, 2017, 5(26): 13730-13739. |
79 | Zhao F Y, An Q F, Ji Y L, et al. A novel type of polyelectrolyte complex/MWCNT hybrid nanofiltration membranes for water softening[J]. Journal of Membrane Science, 2015, 492: 412-421. |
80 | Qiu S, Xue M, Zhu G. Metal-organic framework membranes: from synthesis to separation application[J]. Chemical Society Reviews, 2014, 43(16): 6116-6140. |
81 | Li W, Zhang Y, Li Q, et al. Metal-organic framework composite membranes: synthesis and separation applications[J]. Chemical Engineering Science, 2015, 135: 232-257. |
82 | Xu T, Shehzad M A, Yu D, et al. Highly cation permselective metal-organic framework membranes with leaf-like morphology[J]. ChemSusChem, 2019, 12(12): 2593-2597. |
83 | Guo Y, Ying Y, Mao Y, et al. Polystyrene sulfonate threaded through a metal-organic framework membrane for fast and selective lithium-ion separation[J]. Angewandte Chemie-International Edition, 2016, 55(48): 15120-15124. |
84 | Zhang M C, Guan K C, Ji Y F, et al. Controllable ion transport by surface-charged graphene oxide membrane[J]. Nature Communications, 2019, 10: 1253. |
85 | Abraham J, Vasu K S, Williams C D, et al. Tunable sieving of ions using graphene oxide membranes[J]. Nature Nanotechnology, 2017, 12(6): 546-550. |
86 | Hong S, Constans C, Martins M V S, et al. Scalable graphene-based membranes for ionic sieving with ultrahigh charge selectivity[J]. Nano Letters, 2017, 17(2): 728-732. |
87 | Joshi R K, Carbone P, Wang F C, et al. Precise and ultrafast molecular sieving through graphene oxide membranes[J]. Science, 2014, 343(6172): 752-754. |
88 | Chen L, Shi G, Shen J, et al. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing[J]. Nature, 2017, 550: 380-383. |
89 | Jia Z, Wang Y. Covalently crosslinked graphene oxide membranes by esterification reactions for ions separation[J]. Journal of Materials Chemistry A, 2015, 3(8): 4405-4412. |
90 | Xi Y H, Liu Z, Ji J, et al. Graphene-based membranes with uniform 2D nanochannels for precise sieving of mono-/multi-valent metal ions[J]. Journal of Membrane Science, 2018, 550: 208-218. |
91 | Liang S S, Wang S, Chen L, et al. Controlling interlayer spacings of graphene oxide membranes with cationic for precise sieving of mono-/multi-valent ions[J]. Separation and Purification Technology, 2020, 241: 116738. |
92 | Wei Y, Pastuovic Z, Shen C, et al. Ion beam engineered graphene oxide membranes for mono-/di-valent metal ions separation[J]. Carbon, 2019, 158: 598-606. |
93 | Ren C E, Hatzell K B, Alhabeb M, et al. Charge- and size-selective ion sieving through Ti3C2Tx MXene membranes[J]. Journal of Physical Chemistry Letters, 2015, 6(20): 4026-4031. |
94 | Deng M, Kwac K, Li M, et al. Stability, molecular sieving, and ion diffusion selectivity of a lamellar membrane from two-dimensional molybdenum disulfide[J]. Nano Letters, 2017, 17(4): 2342-2348. |
95 | Wang J, Zhang Z, Zhu J, et al. Ion sieving by a two-dimensional Ti3C2Tx alginate lamellar membrane with stable interlayer spacing[J]. Nature Communications, 2020, 11(1): 3540-3540. |
[1] | Yanpeng WU, Xiaoyu LI, Qiaoyang ZHONG. Experimental analysis on filtration performance of electrospun nanofibers with amphiphobic membrane of oily fine particles [J]. CIESC Journal, 2023, 74(S1): 259-264. |
[2] | Yaxin ZHAO, Xueqin ZHANG, Rongzhu WANG, Guo SUN, Shanjing YAO, Dongqiang LIN. Removal of monoclonal antibody aggregates with ion exchange chromatography by flow-through mode [J]. CIESC Journal, 2023, 74(9): 3879-3887. |
[3] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[4] | Jiayi ZHANG, Jiali HE, Jiangpeng XIE, Jian WANG, Yu ZHAO, Dongqiang ZHANG. Research progress of pervaporation technology for N-methylpyrrolidone recovery in lithium battery production [J]. CIESC Journal, 2023, 74(8): 3203-3215. |
[5] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[6] | Shuang LIU, Linzhou ZHANG, Zhiming XU, Suoqi ZHAO. Study on molecular level composition correlation of viscosity of residual oil and its components [J]. CIESC Journal, 2023, 74(8): 3226-3241. |
[7] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[8] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[9] | Yuanliang ZHANG, Xinqi LUAN, Weige SU, Changhao LI, Zhongxing ZHAO, Liqin ZHOU, Jianmin CHEN, Yan HUANG, Zhenxia ZHAO. Study on selective extraction of nicotine by ionic liquids composite extractant and DFT calculation [J]. CIESC Journal, 2023, 74(7): 2947-2956. |
[10] | Jinming GAO, Yujiao GUO, Chenglin E, Chunxi LU. Study on the separation characteristics of a downstream gas-liquid vortex separator in a closed hood [J]. CIESC Journal, 2023, 74(7): 2957-2966. |
[11] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[12] | Kuikui HAN, Xianglong TAN, Jinzhi LI, Ting YANG, Chun ZHANG, Yongfen ZHANG, Hongquan LIU, Zhongwei YU, Xuehong GU. Four-channel hollow fiber MFI zeolite membrane for the separation of xylene isomers [J]. CIESC Journal, 2023, 74(6): 2468-2476. |
[13] | Xingchi ZHU, Zhiyuan GUO, Zhiyong JI, Jing WANG, Panpan ZHANG, Jie LIU, Yingying ZHAO, Junsheng YUAN. Simulation and optimization of selective electrodialysis magnesium and lithium separation process [J]. CIESC Journal, 2023, 74(6): 2477-2485. |
[14] | Zhaoguang CHEN, Yuxiang JIA, Meng WANG. Modeling neutralization dialysis desalination driven by low concentration waste acid and its validation [J]. CIESC Journal, 2023, 74(6): 2486-2494. |
[15] | Lei WANG, Lei WANG, Yunlong BAI, Liuliu HE. Preparation of SA lithium ion sieve membrane and its adsorptive properties [J]. CIESC Journal, 2023, 74(5): 2046-2056. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||