CIESC Journal ›› 2021, Vol. 72 ›› Issue (1): 180-191.DOI: 10.11949/0438-1157.20200976
• Reviews and monographs • Previous Articles Next Articles
WANG Yutong1,2(),PAN Lun1,2,ZHANG Xiangwen1,2,ZOU Jijun1,2()
Received:
2020-07-20
Revised:
2020-08-20
Online:
2021-01-05
Published:
2021-01-05
Contact:
ZOU Jijun
王雨桐1,2(),潘伦1,2,张香文1,2,邹吉军1,2()
通讯作者:
邹吉军
作者简介:
王雨桐(1994—),女,博士研究生,基金资助:
CLC Number:
WANG Yutong, PAN Lun, ZHANG Xiangwen, ZOU Jijun. Research progress of ammonia borane hydrolytic hydrogen production[J]. CIESC Journal, 2021, 72(1): 180-191.
王雨桐, 潘伦, 张香文, 邹吉军. 氨硼烷水解制氢研究进展[J]. 化工学报, 2021, 72(1): 180-191.
Add to citation manager EndNote|Ris|BibTeX
1 | Rahman M W. A review on on–board challenges of magnesium–based hydrogen storage materials for automobile applications[C]//AIP Conference Proceedings, 2017, 1851(1): 020093. |
2 | Feng X, Zhao Y H, Liu D K, et al. Towards high activity of hydrogen production from ammonia borane over efficient non-noble Ni5P4 catalyst[J]. International Journal of Hydrogen Energy, 2018, 43(36): 17112-17120. |
3 | U.S. Department of Energy. Hydrogen storage [EB/OL]. [2020-07-18]. . |
4 | Mohtadi R, Orimo S. The renaissance of hydrides as energy materials[J]. Nature Reviews Materials, 2017, 2(3): 16091. |
5 | Yadav M, Xu Q. Liquid-phase chemical hydrogen storage materials[J]. Energy & Environmental Science, 2012, 5(12): 9698-9725. |
6 | Shore S G, Parry R W. The crystalline compound ammonia-borane, NH3BH3[J]. Journal of the American Chemical Society, 1955, 77(22): 6084-6085. |
7 | Stephens F H, Pons V, Baker R T. Ammonia-borane: the hydrogen source par excellence?[J]. Dalton Transactions, 2007, 25(1): 2613-2626. |
8 | Peng B, Chen J. Ammonia borane as an efficient and lightweight hydrogen storage medium[J]. Energy & Environmental Science, 2008, 1(4): 479-483. |
9 | Heldebrant D J, Karkamkar A, Linehan J C, et al. Synthesis of ammonia borane for hydrogen storage applications[J]. Energy & Environmental Science, 2008, 1(1): 156-160. |
10 | Keskin E, Coşkuner Filiz B, Kılıç Depren S, et al. Recommendations for ammonia borane composite pellets as a hydrogen storage medium[J]. International Journal of Hydrogen Energy, 2018, 43(45): 20354-20371. |
11 | Patel N, Miotello A. Progress in Co-B related catalyst for hydrogen production by hydrolysis of boron-hydrides: a review and the perspectives to substitute noble metals[J]. International Journal of Hydrogen Energy, 2015, 40(3): 1429-1464. |
12 | Peng C Y, Kang L, Cao S, et al. Nanostructured Ni2P as a robust catalyst for the hydrolytic dehydrogenation of ammonia-borane[J]. Angewandte Chemie International Edition, 2015, 54(52): 15725-15729. |
13 | Lin F, Shao B, Li Z, et al. Visible light photocatalysis over solid acid: enhanced by gold plasmonic effect[J]. Applied Catalysis B-Environmental, 2017, 218(1): 480-487. |
14 | Benedetto S D, Carewska M, Cento C, et al. Effect of milling and doping on decomposition of NH3BH3 complex[J]. Thermochimica Acta, 2006, 441(2): 184-190. |
15 | Chiriac R, Toche F, Demirci U B, et al. Instability of the CuCl2–NH3BH3 mixture followed by TGA and DSC[J]. Thermochimica Acta, 2013, 567(1): 100-106. |
16 | Denney M C, Pons V, Hebden T J, et al. Efficient catalysis of ammonia borane dehydrogenation[J]. Journal of the American Chemical Society, 2006, 128(37): 12048-12049. |
17 | Kostka J F, Schellenberg R, Baitalow F, et al. Concentration-dependent dehydrogenation of ammonia-borane/triglyme mixtures[J]. European Journal of Inorganic Chemistry, 2012, 2012(1): 49-54. |
18 | Peng C Y, Hou C C, Chen Q Q, et al. Cu(OH)2 supported on Fe(OH)3 as a synergistic and highly efficient system for the dehydrogenation of ammonia-borane[J]. Science Bulletin, 2018, (63): 1583-1590. |
19 | Keaton R J, Blacquiere J M, Baker R T. Base metal catalyzed dehydrogenation of ammonia-borane for chemical hydrogen storage[J]. Journal of the American Chemical Society, 2007, 129(7): 1844-1845. |
20 | Cheng H F, Qian X F, Kuwahara Y, et al. A plasmonic molybdenum oxide hybrid with reversible tunability for visible-light-enhanced catalytic reactions[J]. Advanced Materials, 2015, 27(31): 4616-4621. |
21 | Rakap M, Ozkar S. Zeolite confined palladium(0) nanoclusters as effective and reusable catalyst for hydrogen generation from the hydrolysis of ammonia-borane[J]. International Journal of Hydrogen Energy, 2010, 35(3): 1305-1312. |
22 | Yang X J, Cheng F Y, Liang J, et al. PtxNi1-x nanoparticles as catalysts for hydrogen generation from hydrolysis of ammonia borane[J]. International Journal of Hydrogen Energy, 2009, 34(21): 8785-8791. |
23 | Rachiero G P, Demirci U B, Miele P. Bimetallic RuCo and RuCu catalysts supported on gamma-Al2O3. A comparative study of their activity in hydrolysis of ammonia-borane[J]. International Journal of Hydrogen Energy, 2011, 36(12): 7051-7065. |
24 | Yang X J, Cheng F Y, Liang J, et al. Carbon-supported Ni1-x@Ptx (x=0.32, 0.43, 0.60, 0.67, and 0.80) core-shell nanoparticles as catalysts for hydrogen generation from hydrolysis of ammonia borane[J]. International Journal of Hydrogen Energy, 2011, 36(3): 1984-1990. |
25 | Chandra M, Xu Q. A high-performance hydrogen generation system: transition metal-catalyzed dissociation and hydrolysis of ammonia–borane[J]. Journal of Power Sources, 2006, 156(2): 190-194. |
26 | Chandra M, Xu Q. Room temperature hydrogen generation from aqueous ammonia-borane using noble metal nano-clusters as highly active catalysts[J]. Journal of Power Sources, 2007, 168(1): 135-142. |
27 | Yao C F, Zhuang L, Cao Y L, et al. Hydrogen release from hydrolysis of borazane on Pt- and Ni-based alloy catalysts[J]. International Journal of Hydrogen Energy, 2008, 33(10): 2462-2467. |
28 | Fu F Y, Wang C L, Wang Q, et al. Highly selective and sharp volcano-type synergistic Ni2Pt@ZIF-8-catalyzed hydrogen evolution from ammonia borane hydrolysis[J]. Journal of the American Chemical Society, 2018, 140(31): 10034-10042. |
29 | Mori K, Miyawaki K, Yamashita H. Ru and Ru-Ni nanoparticles on TiO2 support as extremely active catalysts for hydrogen production from ammonia-borane[J]. ACS Catalysis, 2016, 6(5): 3128-3135. |
30 | Li J J, Guan Q Q, Wu H, et al. Highly active and stable metal single-atom catalysts achieved by strong electronic metal-support interactions[J]. Journal of the American Chemical Society, 2019, 141(37): 14515-14519. |
31 | Rakap M, Ozkar S. Hydrogen generation from the hydrolysis of ammonia-borane using intrazeolite cobalt(0) nanoclusters catalyst[J]. International Journal of Hydrogen Energy, 2010, 35(8): 3341-3346. |
32 | Metin O, Dinc M, Eren Z S, et al. Silica embedded cobalt(0) nanoclusters: efficient, stable and cost effective catalyst for hydrogen generation from the hydrolysis of ammonia borane[J]. International Journal of Hydrogen Energy, 2011, 36(18): 11528-11535. |
33 | Metin O, Ozkar S. Water soluble nickel(0) and cobalt(0) nanoclusters stabilized by poly(4-styrenesulfonic acid-co-maleic acid): highly active, durable and cost effective catalysts in hydrogen generation from the hydrolysis of ammonia borane[J]. International Journal of Hydrogen Energy, 2011, 36(2): 1424-1432. |
34 | Brooks R M, Maafa I M, Al-Enizi A M, et al. Electrospun bimetallic NiCr nanoparticles@carbon nanofibers as an efficient catalyst for hydrogen generation from ammonia borane[J]. Nanomaterials, 2019, 9(8): 1082-1095. |
35 | Zahmakiran M, Durap F, Ozkar S. Zeolite confined copper(0) nanoclusters as cost-effective and reusable catalyst in hydrogen generation from the hydrolysis of ammonia-borane[J]. International Journal of Hydrogen Energy, 2010, 35(1): 187-197. |
36 | Ozay O, Inger E, Aktas N, et al. Hydrogen production from ammonia borane via hydrogel template synthesized Cu, Ni, Co composites[J]. International Journal of Hydrogen Energy, 2011, 36(14): 8209-8216. |
37 | Yang X, Li Q, Li L, et al. CuCo binary metal nanoparticles supported on boron nitride nanofibers as highly efficient catalysts for hydrogen generation from hydrolysis of ammonia borane[J]. Journal of Power Sources, 2019, 431(1): 135-143. |
38 | Xu Q, Chandra M. Catalytic activities of non-noble metals for hydrogen generation from aqueous ammonia-borane at room temperature[J]. Journal of Power Sources, 2006, 163(1): 364-370. |
39 | Wang Y, Pan L, Chen Y, et al. Mo-doped Ni-based catalyst for remarkably enhancing catalytic hydrogen evolution of hydrogen-storage materials[J]. International Journal of Hydrogen Energy, 2020, 45(31): 15560-15570. |
40 | Wang C, Tuninetti J, Wang Z, et al. Hydrolysis of ammonia-borane over Ni/ZIF-8 nanocatalyst: high efficiency, mechanism, and controlled hydrogen release[J]. Journal of the American Chemical Society, 2017, 139(33): 11610-11615. |
41 | Cheng S, Liu Y, Zhao Y, et al. Superfine CoNi alloy embedded in Al2O3 nanosheets for efficient tandem catalytic reduction of nitroaromatic compounds by ammonia borane[J]. Dalton Trans., 2019, 48(47): 17499-17506. |
42 | Rablen P R. Large effect on borane bond dissociation energies resulting from coordination by Lewis bases[J]. Journal of the American Chemical Society, 1997, 119(35): 8350-8360. |
43 | Oh S, Song D, Kim H, et al. Cobalt-iron-phosphorus catalysts for efficient hydrogen generation from hydrolysis of ammonia borane solution[J]. Journal of Alloys and Compounds, 2019, 806(1): 643-649. |
44 | Zhou X, Meng X F, Wang J M, et al. Boron nitride supported NiCoP nanoparticles as noble metal-free catalyst for highly efficient hydrogen generation from ammonia borane[J]. International Journal of Hydrogen Energy, 2019, 44(10): 4764-4770. |
45 | Hou C C, Li Q, Wang C J, et al. Ternary Ni-Co-P nanoparticles as noble-metal-free catalysts to boost the hydrolytic dehydrogenation of ammonia-borane[J]. Energy & Environmental Science, 2017, 10(8): 1770-1776. |
46 | Grosvenor A P, Wik S D, Cavell R G, et al. Examination of the bonding in binary transition-metal monophosphides MP (M = Cr, Mn, Fe, Co) by X-ray photoelectron spectroscopy[J]. Inorganic Chemistry, 2005, 44(24): 8988-8998. |
47 | Guan S, An L, Ashraf S, et al. Oxygen vacancy excites Co3O4 nanocrystals embedded into carbon nitride for accelerated hydrogen generation[J]. Applied Catalysis B: Environmental, 2020, 269(15): 118775-118785. |
48 | Yamada Y, Yano K, Fukuzumi S. Catalytic application of shape-controlled Cu2O particles protected by Co3O4 nanoparticles for hydrogen evolution from ammonia borane[J]. Energy & Environmental Science, 2012, 5(1): 5356-5363. |
49 | Jia H, Liu S, Zheng G P, et al. Collagen-graphene oxide magnetic hybrids anchoring Pd(0) catalysts for efficient H2 generation from ammonia borane[J]. International Journal of Hydrogen Energy, 2019, 44(49): 27022-27029. |
50 | Tonbul Y, Akbayrak S, Ozkar S. Magnetically separable rhodium nanoparticles as catalysts for releasing hydrogen from the hydrolysis of ammonia borane[J]. Journal of Colloid and Interface Science, 2019, 553(1): 581-587. |
51 | Liu S, Li Y T, Zheng X C, et al. Pd nanoparticles anchoring to core-shell Fe3O4@SiO2-porous carbon catalysts for ammonia borane hydrolysis[J]. International Journal of Hydrogen Energy, 2020, 45(3): 1671-1680. |
52 | Zhang X, Zhao Y F, Jia X D, et al. Silica-protected ultrathin Ni3FeN nanocatalyst for the efficient hydrolytic dehydrogenation of NH3BH3[J]. Advanced Energy Materials, 2018, 8(12): 1702780-1702787. |
53 | Li Y, Zhang H, Xu T, et al. Under-water superaerophobic pine-shaped Pt nanoarray electrode for ultrahigh-performance hydrogen evolution[J]. Advanced Functional Materials, 2015, 25(11): 1737-1744. |
54 | Zhang H, Gu X J, Song J, et al. Non-noble metal nanoparticles supported by postmodified porous organic semiconductors: highly efficient catalysts for visible-light-driven on-demand H2 evolution from ammonia borane[J]. ACS Applied Materials & Interfaces, 2017, 9(38): 32767-32774. |
55 | Song J, Gu X J, Cheng J, et al. Remarkably boosting catalytic H2 evolution from ammonia borane through the visible-light-driven synergistic electron effect of non-plasmonic noble-metal-free nanoparticles and photoactive metal-organic frameworks[J]. Applied Catalysis B-Environmental, 2018, 225(1): 424-432. |
56 | Wang Y T, Shen G Q, Zhang Y X, et al. Visible-light-induced unbalanced charge on NiCoP/TiO2 sensitized system for rapid H2 generation from hydrolysis of ammonia borane[J]. Applied Catalysis B-Environmental, 2020, 260(1): 118183-118190. |
57 | Sun D D, Hao Y X, Wang C Y, et al. TiO2-CdS supported CuNi nanoparticles as a highly efficient catalyst for hydrolysis of ammonia borane under visible-light irradiation[J]. International Journal of Hydrogen Energy, 2020, 45(7): 4390-4402. |
58 | Awazu K, Fujimaki M, Rockstuhl C, et al. A plasmonic photocatalyst consisting of sliver nanoparticles embedded in titanium dioxide[J]. Journal of the American Chemical Society, 2008, 130(5): 1676-1680. |
59 | Link S, El-Sayed M A. Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals[J]. International Reviews in Physical Chemistry, 2000, 19(3): 409-453. |
60 | Hartland G V. Optical studies of dynamics in noble metal nanostructures[J]. Chemical Reviews, 2011, 111(6): 3858-3887. |
61 | Rej S, Hsia C F, Chen T Y, et al. Facet-dependent and light-assisted efficient hydrogen evolution from ammonia borane using gold-palladium core-shell nanocatalysts[J]. Angewandte Chemie International Edition, 2016, 55(25): 7222-7226. |
62 | Yin H B, Kuwahara Y, Mori K, et al. Localized surface plasmon resonances in plasmonic molybdenum tungsten oxide hybrid for visible-light-enhanced catalytic reaction[J]. Journal of Physical Chemistry C, 2017, 121(42): 23531-23540. |
63 | Yin H B, Kuwahara Y, Mori K, et al. High-surface-area plasmonic MoO3-x: rational synthesis and enhanced ammonia borane dehydrogenation activity[J]. Journal of Materials Chemistry A, 2017, 5(19): 8946-8953. |
64 | Liu P H, Wen M C, Tan C S, et al. Surface plasmon resonance enhancement of production of H2 from ammonia borane solution with tunable Cu2-xS nanowires decorated by Pd nanoparticles[J]. Nano Energy, 2017, 31(1): 57-63. |
65 | Zhang Z Y, Jiang X Y, Liu B K, et al. IR-driven ultrafast transfer of plasmonic hot electrons in nonmetallic branched heterostructures for enhanced H2 generation[J]. Advanced Materials, 2018, 30(9): 1705221-1705231. |
66 | Chen J Q, Hu M, Ming M, et al. Carbon-supported small Rh nanoparticles prepared with sodium citrate: toward high catalytic activity for hydrogen evolution from ammonia borane hydrolysis[J]. International Journal of Hydrogen Energy, 2018, 43(5): 2718-2725. |
67 | Wang Q, Fu F Y, Yang S, et al. Dramatic synergy in CoPt nanocatalysts stabilized by “Click” dendrimers for evolution of hydrogen from hydrolysis of ammonia borane[J]. ACS Catalysis, 2019, 9(2): 1110-1119. |
68 | Chen M H, Zhou L Q, Lu D, et al. RuCo bimetallic alloy nanoparticles immobilized on multi-porous MIL-53(Al) as a highly efficient catalyst for the hydrolytic reaction of ammonia borane[J]. International Journal of Hydrogen Energy, 2018, 43(3): 1439-1450. |
69 | Ge Y, Ye W, Shah Z H, et al. PtNi/NiO clusters coated by hollow sillica: novel design for highly efficient hydrogen production from ammonia-borane[J]. ACS Applied Materials & Interfaces, 2017, 9(4): 3749-3756. |
70 | Li Z, He T, Matsumura D, et al. Atomically dispersed Pt on the surface of Ni particles: synthesis and catalytic function in hydrogen generation from aqueous ammonia–borane[J]. ACS Catalysis, 2017, 7(10): 6762-6769. |
71 | Lu D S, Li J H, Lin C H, et al. A simple and scalable route to synthesize CoxCu1-xCo2O4@CoyCu1-yCo2O4 yolk-shell microspheres, a high-performance catalyst to hydrolyze ammonia borane for hydrogen production[J]. Small, 2019, 15(10): 1805460-1805469. |
72 | Gao M Y, Yu Y S, Yang W W, et al. Ni nanoparticles supported on graphitic carbon nitride as visible light catalysts for hydrolytic dehydrogenation of ammonia borane[J]. Nanoscale, 2019, 11(8): 3506-3513. |
73 | Yang X J, Wang C Y, Gao R Y, et al. Non-noble metallic nanoparticles supported on titania spheres as catalysts for hydrogen generation from hydrolysis of ammonia borane under ultraviolet light irradiation[J]. International Journal of Hydrogen Energy, 2018, 43(34): 16556-16565. |
74 | Verma P, Kuwahara Y, Mori K, et al. Pd/Ag and Pd/Au bimetallic nanocatalysts on mesoporous silica for plasmon-mediated enhanced catalytic activity under visible light irradiation[J]. Journal of Materials Chemistry A, 2016, 4(26): 10142-10150. |
75 | Jo S, Verma P, Kuwahara Y, et al. Enhanced hydrogen production from ammonia borane using controlled plasmonic performance of Au nanoparticles deposited on TiO2[J]. Journal of Materials Chemistry A, 2017, 5(41): 21883-21892. |
76 | Cheng H F, Kamegawa T, Mori K, et al. Surfactant-free nonaqueous synthesis of plasmonic molybdenum oxide nanosheets with enhanced catalytic activity for hydrogen generation from ammonia borane under visible light[J]. Angewandte Chemie-International Edition, 2014, 53(11): 2910-2914. |
[1] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[2] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[3] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[4] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[5] | Yang WANG, Yongqiang DAI, Wei ZENG. Study of the enhanced thermoelectric properties of ionic hydrogel materials by 2,5-dihydroxybenzenesulfonate [J]. CIESC Journal, 2023, 74(9): 3946-3955. |
[6] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[7] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[8] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[9] | Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance [J]. CIESC Journal, 2023, 74(7): 2908-2918. |
[10] | Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review [J]. CIESC Journal, 2023, 74(7): 2735-2752. |
[11] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[12] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[13] | Maolin DONG, Lidong CHEN, Liulian HUANG, Weibing WU, Hongqi DAI, Huiyang BIAN. Research progress in preparation of lignonanocellulose by acid hydrotropes and their functional applications [J]. CIESC Journal, 2023, 74(6): 2281-2295. |
[14] | Xiqing ZHANG, Yanting WANG, Yanhong XU, Shuling CHANG, Tingting SUN, Ding XUE, Lihong ZHANG. Effect of Mg content on isobutane dehydrogenation properties over nanosheets supported Pt-In catalysts [J]. CIESC Journal, 2023, 74(6): 2427-2435. |
[15] | Jipeng ZHOU, Wenjun HE, Tao LI. Reaction engineering calculation of deactivation kinetics for ethylene catalytic oxidation over irregular-shaped catalysts [J]. CIESC Journal, 2023, 74(6): 2416-2426. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||