CIESC Journal ›› 2021, Vol. 72 ›› Issue (1): 247-258.DOI: 10.11949/0438-1157.20201065
• Reviews and monographs • Previous Articles Next Articles
ZHAO Jinzheng(),ZHOU Guohui,LIU Xiaomin(
)
Received:
2020-07-30
Revised:
2020-10-26
Online:
2021-01-05
Published:
2021-01-05
Contact:
LIU Xiaomin
通讯作者:
刘晓敏
作者简介:
赵金政(1995—),男,硕士研究生,基金资助:
CLC Number:
ZHAO Jinzheng, ZHOU Guohui, LIU Xiaomin. Study on application and mechanism of ionic liquids in biomass dissolution and separation[J]. CIESC Journal, 2021, 72(1): 247-258.
赵金政, 周国辉, 刘晓敏. 离子液体在生物质溶解分离中的应用与机理研究[J]. 化工学报, 2021, 72(1): 247-258.
1 | Stern P C, Janda K B, Brown M A, et al. Opportunities and insights for reducing fossil fuel consumption by households and organizations[J]. Nature Energy, 2016, 1(5): 267-281. |
2 | Shafiee S, Topal E. When will fossil fuel reserves be diminished?[J]. Energy Policy, 2009, 37(1): 181-189. |
3 | Christensen C H, Rass-Hansen J, Marsden C C, et al. The renewable chemicals industry[J]. ChemSusChem, 2008, 1(4): 283-289. |
4 | Sanderson K. Lignocellulose: a chewy problem[J]. Nature, 2011, 474(7352): S12-S14. |
5 | MacFarlane D R, Tachikawa N, Forsyth M, et al. Energy applications of ionic liquids[J]. Energy & Environmental Science, 2014, 7(1): 232-250. |
6 | Tadesse H, Luque R. Advances on biomass pretreatment using ionic liquids: an overview[J]. Energy & Environmental Science, 2011, 4(10): 3913-3929. |
7 | Maurya D P, Singla A, Negi S. An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol[J]. 3 Biotech, 2015, 5(5): 597-609. |
8 | Duque A, Manzanares P, Ballesteros M. Extrusion as a pretreatment for lignocellulosic biomass: fundamentals and applications[J]. Renewable Energy, 2017, 114: 1427-1441. |
9 | Jonsson L J, Martin C. Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects[J]. Bioresource Technology, 2016, 199: 103-112. |
10 | Zhang Z T, Xie Y J, He X L, et al. Comparison of high-titer lactic acid fermentation from NaOH- and NH3-H2O2-pretreated corncob by bacillus coagulans using simultaneous saccharification and fermentation[J]. Scientific Reports, 2016, 6: 2045-2322. |
11 | Nitsos C, Rova U, Christakopoulos P. Organosolv fractionation of softwood biomass for biofuel and biorefinery applications[J]. Energies, 2018, 11(1): 1-23. |
12 | Yoo C G, Pu Y Q, Ragauskas A J. Ionic liquids: promising green solvents for lignocellulosic biomass utilization[J]. Current Opinion in Green and Sustainable Chemistry, 2017, 5: 5-11. |
13 | Pielhop T, Amgarten J, von Rohr P R, et al. Steam explosion pretreatment of softwood: the effect of the explosive decompression on enzymatic digestibility[J]. Biotechnology for Biofuels, 2016, 9: 152. |
14 | Li H Y, Chen X, Wang C Z, et al. Evaluation of the two-step treatment with ionic liquids and alkali for enhancing enzymatic hydrolysis of Eucalyptus: chemical and anatomical changes [J]. Biotechnology for Biofuels, 2016, 9: 1754-6834. |
15 | Hassan S S, Williams G A, Jaiswal A K. Emerging technologies for the pretreatment of lignocellulosic biomass [J]. Bioresource Technology, 2018, 262: 310-318. |
16 | Supasitmongkol S, Styring P. High CO2 solubility in ionic liquids and a tetraalkylammonium-based poly(ionic liquid)[J]. Energy & Environmental Science, 2010, 3(12): 1961-1972. |
17 | Zhang X, Zhang X, Dong H, et al. Carbon capture with ionic liquids: overview and progress[J]. Energy & Environmental Science, 2012, 5(5): 6668-6681. |
18 | Wang N, Lee J K. Gas-phase and ionic liquid experimental and computational studies of imidazole acidity and carbon dioxide capture[J]. The Journal of Organic Chemistry, 2019, 84(22): 14593-14601. |
19 | Cesari C, Cingolani A, Teti M, et al. Imidazolium salts of ruthenium anionic cyclopentadienone complexes: ion pair for bifunctional catalysis in ionic liquids[J]. European Journal of Inorganic Chemistry, 2020, 2020(11/12): 1114-1122. |
20 | Lahiri A, Pulletikurthi G, Endres F. A review on the electroless deposition of functional materials in ionic liquids for batteries and catalysis[J]. Frontiers in Chemistry, 2019, 7: 85. |
21 | Karimi B, Tavakolian M, Akbari M, et al. Ionic liquids in asymmetric synthesis: an overall view from reaction media to supported ionic liquid catalysis[J]. ChemCatChem, 2018, 10(15): 3173-3205. |
22 | Yao L, Zhang B J, Jiang H J, et al. Poly(ionic liquid): a new phase in a thermoregulated phase separated catalysis and catalyst recycling system of transition metal-mediated ATRP[J]. Polymers, 2018, 10(4): 347. |
23 | Schroeder K, Cognigni A, Hejazifar M, et al. Surface-active ionic liquids in water: targeted nanoreactors for synthesis, catalysis and materials preparation[J]. Abstracts of Papers of the American Chemical Society, 2018, 255: 136-145. |
24 | Sharma H, Srivastava S. Anion-cation co-operative catalysis by artificial sweetener saccharine-based ionic liquid for sustainable synthesis of 3, 4-dihydropyrano[c]chromenes, 4, 5-dihydropyrano[4, 3-b]pyran and tetrahydrobenzo[b]pyrans in aqueous medium [J]. Advances, 2018, 8(68): 38974-38979. |
25 | Wang Y, Nian Y, Zhang J, et al. MOMTPPC improved Cu-based heterogeneous catalyst with high efficiency for acetylene hydrochlorination[J]. Molecular Catalysis, 2019, 479: 110612. |
26 | Lee Y Y, Edgehouse K, Klemm A, et al. Capsules of reactive ionic liquids for selective capture of carbon dioxide at low concentrations[J]. ACS Appl. Mater. Interfaces, 2020, 12(16): 19184-19193. |
27 | Lv S Y, Li Y L, Yao T, et al. Rhodium-catalyzed direct C—H bond cyanation in ionic liquids[J]. Organic Letters, 2018, 20(16): 4994-4997. |
28 | Chum H L K V, Miller L, Osteryoung R. Electrochemical scrutiny of organometallic iron complexes and hexamethylbenzene in a room temperature molten salt[J]. Journal of the American Chemical Society, 1975, 97: 3264-3265. |
29 | Knipping E, Aucher C, Guirado G, et al. Room temperature ionic liquids versus organic solvents as lithium-oxygen battery electrolytes[J]. New Journal of Chemistry, 2018, 42(6): 4693-4699. |
30 | Dong X J, Wang R G, Jin W W, et al. Electrochemical oxidative dehydrogenative phosphorylation of N-heterocycles with P(O)-H compounds in imidazolium-based ionic liquid[J]. Organic Letters, 2020, 22(8): 3062-3066. |
31 | Luo Q M, Wei P R, Huang Q W, et al. Carbon capsules of ionic liquid for enhanced performance of electrochemical double-layer capacitors[J]. ACS Applied Materials & Interfaces, 2018, 10(19): 16707-16714. |
32 | Terasawa N, Asaka K. High-performance PEDOT: PSS/single-walled carbon nanotube/ionic liquid actuators combining electrostatic double-layer and faradaic capacitors[J]. Langmuir, 2016, 32(28): 7210-7218. |
33 | Ganske F, Bornscheuer U T. Lipase-catalyzed glucose fatty acid ester synthesis in ionic liquids[J]. Organic Letters, 2005, 7(14): 3097-3098. |
34 | Mori M, Garcia R G, Belleville M P, et al. A new way to conduct enzymatic synthesis in an active membrane using ionic liquids as catalyst support[J]. Catalysis Today, 2005, 104(2/3/4): 313-317. |
35 | Stevens J C, Shi J. Biocatalysis in ionic liquids for lignin valorization: opportunities and recent developments[J]. Biotechnology Advances, 2019, 37(8): 107418. |
36 | Dupont J, Suarez P A. Physico-chemical processes in imidazolium ionic liquids[J]. Physical Chemistry Chemical Physics, 2006, 8(21): 2441-2452. |
37 | Graenacher C. Cellulose solution: US 1943176[P]. 1934. |
38 | Swatloski R P, Spear S K, Holbrey J D, et al. Dissolution of cellulose with ionic liquids[J]. Journal of the American Chemical Society, 2002, 124(18): 4974-4975. |
39 | Wu J, Zhang J, Zhang H, et al. Homogeneous acetylation of cellulose in a new ionic liquid[J]. Biomacromolecules, 2004, 5(2): 266-268. |
40 | Zhang H, Wu J, Zhang J, et al. 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatizing solvent for cellulose[J]. Macromolecules, 2005, 38(20): 8272-8277. |
41 | Li W Y, Sun N, Stoner B, et al. Rapid dissolution of lignocellulosic biomass in ionic liquids using temperatures above the glass transition of lignin[J]. Green Chemistry, 2011, 13(8): 2038-2047. |
42 | 常聪. MCM-41/Hβ及其改性分子筛催化热解微藻制取生物油实验研究[D]. 青岛: 青岛科技大学, 2013. |
Chang C. Study on catalytic pyrolysis of microalgae to bio-oil with MCM-41/Hβ and its modified molecular sieve catalyst[D]. Qingdao: Qingdao University of Science & Technology, 2013. | |
43 | 高洁, 汤烈贵. 我国纤维素科学发展近况[J]. 纤维素科学与技术, 1993, (1): 1-11. |
Gao J, Tang L G. Recent development of cellulose science in China[J]. Journal of Cellulose Science and Technology, 1993, (1): 1-11. | |
44 | Edgar K J, Buchanan C M, Debenham J S, et al. Advances in cellulose ester performance and application[J]. Progress in Polymer Science, 2001, 26(9): 1605-1688. |
45 | Schmer M R, Vogel K P, Mitchell R B, et al. Net energy of cellulosic ethanol from switchgrass[J]. PNAS, 2008, 105(2): 464-469. |
46 | Ohno H, Fukaya Y. Task specific ionic liquids for cellulose technology[J]. Chemistry Letters, 2009, 38(1): 2-7. |
47 | Xu J L, Yao X Q, Xin J Y, et al. An effective two-step ionic liquids method for cornstalk pretreatment [J]. Journal of Chemical Technology and Biotechnology, 2015, 90(11): 2057-2065. |
48 | Yang S Q, Lu X M, Zhang Y Q, et al. Separation and characterization of cellulose I material from corn straw by low-cost polyhydric protic ionic liquids[J]. Cellulose, 2018, 25(6): 3241-3254. |
49 | Kosan B, Michels C, Meister F. Dissolution and forming of cellulose with ionic liquids[J]. Cellulose, 2008, 15(1): 59-66. |
50 | Vitz J, Erdmenger T, Haensch C, et al. Extended dissolution studies of cellulose in imidazolium based ionic liquids[J]. Green Chemistry, 2009, 11(3): 417-424. |
51 | Zavrel M, Bross D, Funke M, et al. High-throughput screening for ionic liquids dissolving (ligno-)cellulose[J]. Bioresource Technology, 2009, 100(9): 2580-2587. |
52 | Andre M, Loidl J, Laus G, et al. Ionic liquids as advantageous solvents for headspace gas chromatography of compounds with low vapor pressure[J]. Analytical Chemistry, 2005, 77(2): 702-705. |
53 | Zhao H, Baker G A, Song Z Y, et al. Designing enzyme-compatible ionic liquids that can dissolve carbohydrates[J]. Green Chemistry, 2008, 10(6): 696-705. |
54 | Heinze T, Schwikal K, Barthel S. Ionic liquids as reaction medium in cellulose functionalization[J]. Macromolecular Bioscience, 2005, 5(6): 520-525. |
55 | Zhao B, Greiner L, Leitner W. Cellulose solubilities in carboxylate-based ionic liquids[J]. RSC Advances, 2012, 2(6): 2476-2479. |
56 | Fukumoto K, Yoshizawa M, Ohno H. Room temperature ionic liquids from 20 natural amino acids[J]. Journal of the American Chemical Society, 2005, 127(8): 2398-2399. |
57 | Fukaya Y, Sugimoto A, Ohno H. Superior solubility of polysaccharides in low viscosity, polar, and halogen-free 1, 3-dialkylimidazolium formates[J]. Biomacromolecules, 2006, 7(12): 3295-3297. |
58 | Patri A S, Mostofian B, Pu Y Q, et al. A multifunctional cosolvent pair reveals molecular principles of biomass deconstruction[J]. Journal of the American Chemical Society, 2019, 141(32): 12545-12557. |
59 | Zhang C, Kang H L, Li P P, et al. Dual effects of dimethylsulfoxide on cellulose solvating ability of 1-allyl-3-methylimidazolium chloride[J]. Cellulose, 2016, 23(2): 1165-1175. |
60 | Li C Z, Wang Q, Zhao Z K. Acid in ionic liquid: an efficient system for hydrolysis of lignocellulose [J].Green Chemistry, 2008, 10(2): 177-182. |
61 | Xu A R, Wang J J, Wang H Y. Effects of anionic structure and lithium salts addition on the dissolution of cellulose in 1-butyl-3-methylimidazolium-based ionic liquid solvent systems[J]. Green Chemistry, 2010, 12(2): 268-275. |
62 | Saielli G, Wang Y T. Role of the electrostatic interactions in the stabilization of ionic liquid crystals: insights from coarse-grained MD simulations of an imidazolium model[J]. Journal of Physical Chemistry B, 2016, 120(34): 9152-9160. |
63 | Lesch V, Li Z, Bedrov D, et al. The influence of cations on lithium ion coordination and transport in ionic liquid electrolytes: a MD simulation study[J]. Physical Chemistry Chemical Physics, 2016, 18(1): 382-392. |
64 | Ghosh S, Parui S, Jana B, et al. Ionic liquid induced dehydration and domain closure in lysozyme: FCS and MD simulation[J]. Journal of Chemical Physics, 2015, 143(12): 125103. |
65 | Zhao Y L, Liu X M, Wang J J, et al. Effects of anionic structure on the dissolution of cellulose in ionic liquids revealed by molecular simulation[J]. Carbohydrate Polymers, 2013, 94(2): 723-730. |
66 | Zhao Y L, Liu X M, Wang J J, et al. Effects of cationic structure on cellulose dissolution in ionic liquids: a molecular dynamics study[J]. ChemPhysChem, 2012, 13(13): 3126-3133. |
67 | Rabideau B D, Agarwal A, Ismail A E. Observed mechanism for the breakup of small bundles of cellulose Iα and Iβ in ionic liquids from molecular dynamics simulations[J]. Journal of Physical Chemistry B, 2013, 117(13): 3469-3479. |
68 | Rabideau B D, Agarwal A, Ismail A E. The role of the cation in the solvation of cellulose by imidazolium-based ionic liquids[J]. Journal of Physical Chemistry B, 2014, 118(6): 1621-1629. |
69 | Erdmenger T, Haensch C, Hoogenboom R, et al. Homogeneous tritylation of cellulose in 1-butyl-3-methylimidazolium chloride[J]. Macromolecular Bioscience, 2007, 7(4): 440-445. |
70 | Pinkert A, Marsh K N, Pang S, et al. Ionic liquids and their interaction with cellulose [J]. Chemical Reviews, 2009, 109: 6712-6728. |
71 | Lu B L, Xu A R, Wang J J. Cation does matter: how cationic structure affects the dissolution of cellulose in ionic liquids[J].Green Chemistry, 2014, 16(3): 1326-1335. |
72 | Elumalai S, Agarwal B, Runge T M, et al. Integrated two-stage chemically processing of rice straw cellulose to butyl levulinate[J]. Carbohydrate Polymers, 2016, 150: 286-298. |
73 | Li Y, Liu X M, Zhang Y Q, et al. Why only ionic liquids with unsaturated heterocyclic cations can dissolve cellulose: a simulation study[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(4): 3417-3428. |
74 | Li Y, Liu X M, Zhang S J, et al. Dissolving process of a cellulose bunch in ionic liquids: a molecular dynamics study[J]. Phys. Chem. Chem. Phys., 2015, 17(27): 17894-17905. |
75 | Zhao Y, Liu X, Wang J, et al. Insight into the cosolvent effect of cellulose dissolution in imidazolium-based ionic liquid systems[J]. J. Phys. Chem. B, 2013, 117(30): 9042-9049. |
76 | Xu A R, Cao L L, Wang B J, et al. Dissolution behavior of cellulose in IL+DMSO solvent: effect of alkyl length in imidazolium cation on cellulose dissolution[J]. Advances in Materials Science and Engineering, 2015, 2015: 406470. |
77 | Li Y, Wang J J, Liu X M, et al. Towards a molecular understanding of cellulose dissolution in ionic liquids: anion/cation effect, synergistic mechanism and physicochemical aspects[J]. Chemical Science, 2018, 9(17): 4027-4043. |
78 | Payal R S, Bharath R, Periyasamy G, et al. Density functional theory investigations on the structure and dissolution mechanisms for cellobiose and xylan in an ionic liquid: gas phase and cluster calculations[J]. Journal of Physical Chemistry B, 2012, 116(2): 833-840. |
79 | Ma T, Shen Z S, Li H, et al. Effect of H-bonding on Brønsted acid ionic liquids catalyzed in situ transesterification of wet algae[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(11): 4647-4657. |
80 | Kahlen J, Masuch K, Leonhard K. Modelling cellulose solubilities in ionic liquids using COSMO-RS[J]. Green Chemistry, 2010, 12(12): 2172-2181. |
81 | Liu Y R, Thomsen K, Nie Y, et al. Predictive screening of ionic liquids for dissolving cellulose and experimental verification[J]. Green Chemistry, 2016, 18(23): 6246-6254. |
82 | Lee S H, Doherty T V, Linhardt R J, et al. Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis[J]. Biotechnology and Bioengineering, 2009, 102(5): 1368-1376. |
83 | Sun S N, Li M F, Yuan T Q, et al. Effect of ionic liquid pretreatment on the structure of hemicelluloses from corncob[J]. Journal of Agricultural and Food Chemistry, 2012, 60(44): 11120-11127. |
84 | Pu Y Q, Jiang N, Ragauskas A J. Ionic liquid as a green solvent for lignin[J]. Journal of Wood Chemistry and Technology, 2007, 27(1): 23-33. |
85 | Tan S S Y, MacFarlane D R, Upfal J, et al. Extraction of lignin from lignocellulose at atmospheric pressure using alkylbenzenesulfonate ionic liquid[J]. Green Chemistry, 2009, 11(3): 339-345. |
86 | Anugwom I, Eta V, Maki-Arvela P, et al. The effect of switchable ionic liquid (SIL) treatment on the composition and crystallinity of birch chips (Betula pendula) using a novel alkanol amine-organic superbase-derived SIL[J]. Green Processing and Synthesis, 2014, 3(2): 147-154. |
87 | Brandt-Talbot A, Gschwend F J V, Fennell P S, et al. An economically viable ionic liquid for the fractionation of lignocellulosic biomass[J]. Green Chemistry, 2017, 19(13): 3078-3102. |
88 | Sun N, Rahman M, Qin Y, et al. Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate[J]. Green Chemistry, 2009, 11(5): 646-655. |
89 | Merino O, Fundora-Galano G, Luque R, et al. Understanding microwave-assisted lignin solubilization in protic ionic liquids with multiaromatic imidazolium cations[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(3): 4122-4129. |
90 | Zhu Y, Yan J, Liu C, et al. Modeling interactions between a beta-o-4 type lignin model compound and 1-allyl-3-methylimidazolium chloride ionic liquid[J]. Biopolymers, 2017, 107(8): e23022. |
91 | Hu L F, Peng H, Zhang Y, et al. Insight into the interaction between arabinoxylan and imidazolium acetate-based ionic liquids[J]. Carbohydrate Polymers, 2020, 231: 115699. |
92 | Zubeltzu J, Formoso E, Rezabal E. Lignin solvation by ionic liquids: the role of cation[J]. Journal of Molecular Liquids, 2020, 303: 112588. |
93 | Ji H, Lv P. Mechanistic insights into the lignin dissolution behaviors of a recyclable acid hydrotrope, deep eutectic solvent (DES), and ionic liquid (IL)[J]. Green Chemistry, 2020, 22(4): 1378-1387. |
94 | Liu C, Li Y M, Hou Y. Effects of alkalinity of ionic liquids on the structure of biomass in pretreatment process[J].Wood Science and Technology, 2019, 53(1): 177-189. |
95 | Casas A, Palomar J, Alonso M V, et al. Comparison of lignin and cellulose solubilities in ionic liquids by COSMO-RS analysis and experimental validation[J]. Industrial Crops and Products, 2012, 37(1): 155-163. |
96 | Kim D H, Pu Y, Chandra R P, et al. A novel method for enhanced recovery of lignin from aqueous process streams[J]. Journal of Wood Chemistry and Technology, 2007, 27(3/4): 219-224. |
97 | Wang H T, Yuan T Q, Meng L J, et al. Structural and thermal characterization of lauroylated hemicelluloses synthesized in an ionic liquid[J]. Polymer Degradation and Stability, 2012, 97(11): 2323-2330. |
98 | Lan W, Liu C F, Sun R C. Fractionation of bagasse into cellulose, hemicelluloses, and lignin with ionic liquid treatment followed by alkaline extraction [J]. Journal of Agricultural and Food Chemistry, 2011, 59(16): 8691-8701. |
99 | Li H Y, Chen X, Li Y J, et al. The effect of ionic liquids pretreatment on the distribution and structure of alkali-soluble hemicelluloses from eucalyptus[J]. Separation and Purification Technology, 2018, 191: 364-369. |
100 | Hu L F, Peng H, Xia Q, et al. Effect of ionic liquid pretreatment on the physicochemical properties of hemicellulose from bamboo[J]. Journal of Molecular Structure, 2020, 1210: 128067. |
101 | Liu Q P, Hou X D, Li N, et al. Ionic liquids from renewable biomaterials: synthesis, characterization and application in the pretreatment of biomass[J]. Green Chemistry, 2012, 14(2): 304-307. |
102 | Yang B, Qin X Y, Hu H C, et al. Using ionic liquid (EmimAc)-water mixture in selective removal of hemicelluloses from a paper-grade bleached hardwood kraft pulp[J]. Cellulose, 2020, 27: 9653-9661. |
103 | Ma X J, Long Y D, Duan C, et al. Facilitate hemicelluloses separation from chemical pulp in ionic liquid/water by xylanase pretreatment[J]. Industrial Crops and Products, 2017, 109: 459-463. |
104 | Froschauer C, Hummel M, Iakovlev M, et al. Separation of hemicellulose and cellulose from wood pulp by means of ionic liquid/cosolvent systems[J]. Biomacromolecules, 2013, 14(6): 1741-1750. |
105 | Xia Q, Peng H, Yuan L, et al. Anionic structural effect on the dissolution of arabinoxylan-rich hemicellulose in 1-butyl-3-methylimidazolium carboxylate-based ionic liquids[J]. RSC Advances, 2020, 10(20): 11643-11651. |
106 | Berglund J, d'Ortoli T A, Vilaplana F, et al. A molecular dynamics study of the effect of glycosidic linkage type in the hemicellulose backbone on the molecular chain flexibility[J]. Plant Journal, 2016, 88(1): 56-70. |
[1] | Qi WANG, Bin ZHANG, Xiaoxin ZHANG, Hujian WU, Haitao ZHAN, Tao WANG. Synthesis of isoxepac and 2-ethylanthraquinone catalyzed by chloroaluminate-triethylamine ionic liquid/P2O5 [J]. CIESC Journal, 2023, 74(S1): 245-249. |
[2] | Ruimin CHE, Wenqiu ZHENG, Xiaoyu WANG, Xin LI, Feng XU. Research progress on homogeneous processing of cellulose in ionic liquids [J]. CIESC Journal, 2023, 74(9): 3615-3627. |
[3] | Meisi CHEN, Weida CHEN, Xinyao LI, Shangyu LI, Youting WU, Feng ZHANG, Zhibing ZHANG. Advances in silicon-based ionic liquid microparticle enhanced gas capture and conversion [J]. CIESC Journal, 2023, 74(9): 3628-3639. |
[4] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[5] | Lizhi WANG, Qiancheng HANG, Yeling ZHENG, Yan DING, Jiaji CHEN, Qing YE, Jinlong LI. Separation of methyl propionate + methanol azeotrope using ionic liquid entrainers [J]. CIESC Journal, 2023, 74(9): 3731-3741. |
[6] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[7] | Junfeng LU, Huaiyu SUN, Yanlei WANG, Hongyan HE. Molecular understanding of interfacial polarization and its effect on ionic liquid hydrogen bonds [J]. CIESC Journal, 2023, 74(9): 3665-3680. |
[8] | Jiali ZHENG, Zhihui LI, Xinqiang ZHAO, Yanji WANG. Kinetics of ionic liquid catalyzed synthesis of 2-cyanofuran [J]. CIESC Journal, 2023, 74(9): 3708-3715. |
[9] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[10] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[11] | Shaoqi YANG, Shuheng ZHAO, Lungang CHEN, Chenguang WANG, Jianjun HU, Qing ZHOU, Longlong MA. Hydrodeoxygenation of lignin-derived compounds to alkanes in Raney Ni-protic ionic liquid system [J]. CIESC Journal, 2023, 74(9): 3697-3707. |
[12] | Zehao MI, Er HUA. DFT and COSMO-RS theoretical analysis of SO2 absorption by polyamines type ionic liquids [J]. CIESC Journal, 2023, 74(9): 3681-3696. |
[13] | Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf) [J]. CIESC Journal, 2023, 74(9): 3968-3978. |
[14] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[15] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||