CIESC Journal ›› 2021, Vol. 72 ›› Issue (4): 1825-1832.DOI: 10.11949/0438-1157.20201219
• Reviews and monographs • Previous Articles Next Articles
JIANG Liqun1(),YUE Yuanmao1,2,XU Lujiang3,QIAN Le1,LIU Shijun1,ZHAO Zengli1,LI Haibin1,LIAO Yanfen1,2
Received:
2020-08-26
Revised:
2020-09-28
Online:
2021-04-05
Published:
2021-04-05
Contact:
JIANG Liqun
蒋丽群1(),岳元茂1,2,徐禄江3,钱乐1,刘世君1,赵增立1,李海滨1,廖艳芬1,2
通讯作者:
蒋丽群
作者简介:
蒋丽群(1986—),女,博士,副研究员,基金资助:
CLC Number:
JIANG Liqun,YUE Yuanmao,XU Lujiang,QIAN Le,LIU Shijun,ZHAO Zengli,LI Haibin,LIAO Yanfen. Pretreatments promote levoglucosan production from lignocellulose via fast pyrolysis[J]. CIESC Journal, 2021, 72(4): 1825-1832.
蒋丽群,岳元茂,徐禄江,钱乐,刘世君,赵增立,李海滨,廖艳芬. 预处理促进木质纤维素快速热解生成左旋葡聚糖[J]. 化工学报, 2021, 72(4): 1825-1832.
Add to citation manager EndNote|Ris|BibTeX
预处理方式 | 原料 | 主要结构与组分变化 | 热解反应器 | LG产率变化 | 优势 | 劣势 | 文献 |
---|---|---|---|---|---|---|---|
球磨 | 微晶纤维素 | CrI和DP降低 | CDS | 从14.7%(质量)升至24.1%(质量)① | 无废水等后续处理 | 低性价比 | [ |
酸洗 | 甘蔗渣 | AAEMs、无定形纤维素和半纤维素被脱除,CrI提高 | CDS | 从12.0%(质量)升至43.8%(质量)① | 条件温和,操作简单 | 需要去除残留酸,提高了生产成本 | [ |
碱 | 玉米芯 | AAEMs和木质素被脱除,CrI提高 | CDS | 从3.0%升至34.8%② | 条件温和,同时抑制微生物抑制剂的生成,有助于进一步发酵 | 成本较高 | [ |
离子液体 | 甘蔗渣 | AAEMs有效脱除,CrI降低 | CDS | 增幅可达261.9%② | 降低生物油的酸性,离子液体易回收,可重复使用 | 生产成本和能耗高 | [ |
甘油 | 玉米芯 | AAEMs和木质素被脱除,CrI提高 | CDS | 从6.9%(质量)升至44.5%(质量)① | 甘油廉价易得 | 反应温度高 | [ |
粗甘油 | 甘蔗渣 | AAEMs和木质素有效脱除,CrI提高 | CDS | 从8.4%(质量)升至25.2%(质量)① | 提高了粗甘油的利用价值,具有经济效益 | 反应温度高 | [ |
水热 | 桉木 | AAEMs和半纤维素含量降低 | 500℃流化床 | 从4.13%(质量)升至18.00%(质量)① | 环保绿色,操作简单 | 反应温度高 | [ |
生物 | 玉米秸秆 | 木质素被有效降解 | CDS | 增加了183.3%② | 条件温和,设备简单,节能环保,副反应和抑制物含量少 | 反应时间长 | [ |
酸浸渍 | 柳枝 | AAEMs被钝化为催化活性更低的盐 | GC450/MS320 | 从2.3%(质量)升至16.8%(质量)① | 降低了酸洗的成本 | 促进木质素向焦油的转化,可能使反应器 结垢 | [ |
酸洗+酸浸渍 | 花旗松 | AAEMs被脱除 | CDS | 提高50%以上② | 残留酸可进一步催化生成脱水糖的反应 | 成本更高,对设备耐腐蚀性要求高 | [ |
Table 1 Experimental summary of different pretreatment methods
预处理方式 | 原料 | 主要结构与组分变化 | 热解反应器 | LG产率变化 | 优势 | 劣势 | 文献 |
---|---|---|---|---|---|---|---|
球磨 | 微晶纤维素 | CrI和DP降低 | CDS | 从14.7%(质量)升至24.1%(质量)① | 无废水等后续处理 | 低性价比 | [ |
酸洗 | 甘蔗渣 | AAEMs、无定形纤维素和半纤维素被脱除,CrI提高 | CDS | 从12.0%(质量)升至43.8%(质量)① | 条件温和,操作简单 | 需要去除残留酸,提高了生产成本 | [ |
碱 | 玉米芯 | AAEMs和木质素被脱除,CrI提高 | CDS | 从3.0%升至34.8%② | 条件温和,同时抑制微生物抑制剂的生成,有助于进一步发酵 | 成本较高 | [ |
离子液体 | 甘蔗渣 | AAEMs有效脱除,CrI降低 | CDS | 增幅可达261.9%② | 降低生物油的酸性,离子液体易回收,可重复使用 | 生产成本和能耗高 | [ |
甘油 | 玉米芯 | AAEMs和木质素被脱除,CrI提高 | CDS | 从6.9%(质量)升至44.5%(质量)① | 甘油廉价易得 | 反应温度高 | [ |
粗甘油 | 甘蔗渣 | AAEMs和木质素有效脱除,CrI提高 | CDS | 从8.4%(质量)升至25.2%(质量)① | 提高了粗甘油的利用价值,具有经济效益 | 反应温度高 | [ |
水热 | 桉木 | AAEMs和半纤维素含量降低 | 500℃流化床 | 从4.13%(质量)升至18.00%(质量)① | 环保绿色,操作简单 | 反应温度高 | [ |
生物 | 玉米秸秆 | 木质素被有效降解 | CDS | 增加了183.3%② | 条件温和,设备简单,节能环保,副反应和抑制物含量少 | 反应时间长 | [ |
酸浸渍 | 柳枝 | AAEMs被钝化为催化活性更低的盐 | GC450/MS320 | 从2.3%(质量)升至16.8%(质量)① | 降低了酸洗的成本 | 促进木质素向焦油的转化,可能使反应器 结垢 | [ |
酸洗+酸浸渍 | 花旗松 | AAEMs被脱除 | CDS | 提高50%以上② | 残留酸可进一步催化生成脱水糖的反应 | 成本更高,对设备耐腐蚀性要求高 | [ |
1 | 蒋丽群, 郑安庆, 王小波, 等. 生物质定向快速热解制备左旋葡聚糖和芳烃的研究进展[J]. 新能源进展, 2018, 6(5): 402-409. |
Jiang L Q, Zheng A Q, Wang X B, et al. Progress of biomass fast pyrolysis to produce levoglucosan and aromatics [J]. Advances in New and Renewable Energy, 2018, 6(5): 402-409. | |
2 | 李文惠, 武红丽, 黄婷, 等. 左旋葡聚糖的制备与在生物技术领域的应用[J]. 化学通报, 2017, 80(3): 251-259. |
Li W H, Wu H L, Huang T, et al. Preparation of levoglucosan and its applications in biotechnology[J]. Chemistry, 2017, 80(3): 251-259. | |
3 | Bennett N M, Helle S S, Duff S J B. Extraction and hydrolysis of levoglucosan from pyrolysis oil[J]. Bioresource Technology, 2009, 100(23): 6059-6063. |
4 | Lian J, Garcia-Perez M, Chen S L. Fermentation of levoglucosan with oleaginous yeasts for lipid production[J]. Bioresource Technology, 2013, 133: 183-189. |
5 | Fabbri D, Torri C, Baravelli V. Effect of zeolites and nanopowder metal oxides on the distribution of chiral anhydrosugars evolved from pyrolysis of cellulose: an analytical study[J]. Journal of Analytical and Applied Pyrolysis, 2007, 80(1): 24-29. |
6 | Wang S R, Dai G X, Yang H P, et al. Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review[J]. Progress in Energy and Combustion Science, 2017, 62: 33-86. |
7 | Wang Z H, Mcdonald A G, Westerhof R J M, et al. Effect of cellulose crystallinity on the formation of a liquid intermediate and on product distribution during pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2013, 100: 56-66. |
8 | Wang Z H, Pecha B, Westerhof R J M, et al. Effect of cellulose crystallinity on solid/liquid phase reactions responsible for the formation of carbonaceous residues during pyrolysis[J]. Industrial & Engineering Chemistry Research, 2014, 53(8): 2940-2955. |
9 | Takashi H, Shigeyoshi S. Levoglucosan formation from crystalline cellulose: importance of a hydrogen bonding network in the reaction[J]. ChemSusChem, 2013, 6(12): 2356-2368. |
10 | Mukarakate C, Mittal A, Ciesielski P N, et al. Influence of crystal allomorph and crystallinity on the products and behavior of cellulose during fast pyrolysis[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(9): 4662-4674. |
11 | Julien S, Chornet E, Overend R P. Influence of acid pretreatment (H2SO4, HCl, HNO3) on reaction selectivity in the vacuum pyrolysis of cellulose[J]. Journal of Analytical and Applied Pyrolysis, 1993, 27(1): 25-43. |
12 | Lu Q, Hu B, Zhang Z X, et al. Mechanism of cellulose fast pyrolysis: the role of characteristic chain ends and dehydrated units[J]. Combustion and Flame, 2018, 198: 267-277. |
13 | Jiang L Q, Wu N N, Zheng A Q, et al. The integration of dilute acid hydrolysis of xylan and fast pyrolysis of glucan to obtain fermentable sugars[J]. Biotechnology for Biofuels, 2016, 9(1): 196. |
14 | Jiang L Q, Wu N N, Zheng A Q, et al. Effect of glycerol pretreatment on levoglucosan production from corncobs by fast pyrolysis[J]. Polymers, 2017, 9(11): 599. |
15 | 孟鑫. 生物质选择性热解制取葡聚糖类化学品的研究[D]. 南京: 东南大学, 2017. |
Meng X. Selective pyrolysis of biomass for chemicals of levoglucosan and levoglucosenone[D]. Nanjing: Southeast University, 2017. | |
16 | Wang S R, Guo X J, Wang K G, et al. Influence of the interaction of components on the pyrolysis behavior of biomass[J]. Journal of Analytical and Applied Pyrolysis, 2011, 91(1): 183-189. |
17 | Liu Q, Zhong Z P, Wang S R, et al. Interactions of biomass components during pyrolysis: a TG-FTIR study[J]. Journal of Analytical and Applied Pyrolysis. 2011, 90(2): 213-218. |
18 | 金湓, 李宝霞. 纤维素与木质素共热解试验及动力学分析[J]. 化工进展, 2013, 32(2): 303-307. |
Jin P, Li B X. Experiments and kinetic analysis on the co-pyrolysis of cellulose and lignin[J]. Chemical Industry and Engineering Progress, 2013, 32(2): 303-307. | |
19 | Zhang J, Choi Y S, Yoo C G, et al. Cellulose–hemicellulose and cellulose–lignin interactions during fast pyrolysis[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(2): 293-301. |
20 | Kuzhiyil N, Dalluge D, Bai X L, et al. Pyrolytic sugars from cellulosic biomass[J]. ChemSusChem, 2012, 5(11): 2228-2236. |
21 | Fuentes M E, Nowakowski D J, Kubacki M L, et al. Survey of influence of biomass mineral matter in thermochemical conversion of short rotation willow coppice[J]. Journal of the Energy Institute, 2008, 81(4): 234-241. |
22 | 王树荣, 廖艳芬, 文丽华, 等.钾盐催化纤维素快速热裂解机理研究[J]. 燃料化学学报, 2004, 32(6): 694-698. |
Wang S R, Liao Y F, Wen L H, et al. Catalysis mechanism of potassium salt during rapid pyrolysis of cellulose[J]. Journal of Fuel Chemistry and Technology, 2004, 32(6): 694-698. | |
23 | Patwardhan P R, Satrio J A, Brown R C, et al. Influence of inorganic salts on the primary pyrolysis products of cellulose[J]. Bioresource Technology, 2010, 101(12): 4646-4655. |
24 | Zhang S P, Dong Q, Chen T, et al. Combination of light bio-oil washing and torrefaction pretreatment of rice husk: its effects on physicochemical characteristics and fast pyrolysis behavior[J]. Energy & Fuels, 2016, 30(4): 3030-3037. |
25 | Mourant D, Wang Z H, He M, et al. Mallee wood fast pyrolysis: effects of alkali and alkaline earth metallic species on the yield and composition of bio-oil[J]. Fuel, 2011, 90(9): 2915-2922. |
26 | Kwon G, Kim D, Kimura S, et al. Rapid-cooling, continuous-feed pyrolyzer for biomass processing: preparation of levoglucosan from cellulose and starch[J]. Journal of Analytical and Applied Pyrolysis, 2007, 80(1): 1-5. |
27 | Carpenter D, Westover T L, Czernik S, et al. Biomass feedstocks for renewable fuel production: a review of the impacts of feedstock and pretreatment on the yield and product distribution of fast pyrolysis bio-oils and vapors[J]. Green Chemistry, 2014, 16(2): 384-406. |
28 | Jiang L Q, Zheng A Q, Meng J G, et al. A comparative investigation of fast pyrolysis with enzymatic hydrolysis for fermentable sugars production from cellulose[J]. Bioresource Technology, 2019, 274: 281-286. |
29 | Jiang L Q, Wu Y X, Zhao Z L, et al. Selectively biorefining levoglucosan from NaOH pretreated corncobs via fast pyrolysis[J]. Cellulose, 2019, 26(13/14): 7877-7887. |
30 | 吴南南, 蒋丽群, 郑安庆, 等. 离子液体预处理对甘蔗渣快速热解产物的影响[J]. 可再生能源, 2017, 35(4): 495-501. |
Wu N N, Jiang L Q, Zheng A Q, et al. The influence of ionic liquids pretreatment on production by fast pyrolysis from sugarcane bagasse[J]. Renewable Energy Resources, 2017, 35(4): 495-501. | |
31 | Jiang L Q, Wu Y X, Wu N N, et al. Selective saccharification of microwave-assisted glycerol pretreated corncobs via fast pyrolysis and enzymatic hydrolysis[J]. Fuel, 2020, 265: 116965. |
32 | Wu Y X, Jiang L Q, Lin Y, et al. Novel crude glycerol pretreatment for selective saccharification of sugarcane bagasse via fast pyrolysis[J]. Bioresource Technology, 2019, 294: 122094. |
33 | Chang S, Zhao Z L, Zheng A Q, et al. Effect of hydrothermal pretreatment on properties of bio-oil produced from fast pyrolysis of eucalyptus wood in a fluidized bed reactor[J]. Bioresource Technology, 2013, 138: 321-328. |
34 | Yu Y Q, Zeng Y L, Zuo J, et al. Improving the conversion of biomass in catalytic fast pyrolysis via white-rot fungal pretreatment[J]. Bioresource Technology, 2013, 134: 198-203. |
35 | Bai X, Brown R C, Fu J, et al. The influence of alkali and alkaline earth metals and the role of acid pretreatments in production of sugars from switchgrass based on solvent liquefaction[J]. Energy & Fuels, 2014, 28(2): 1111-1120. |
36 | Zhou S, Wang Z H, Liaw S, et al. Effect of sulfuric acid on the pyrolysis of Douglas fir and hybrid poplar wood: Py-GC/MS and TG studies[J]. Journal of Analytical and Applied Pyrolysis, 2013, 104: 117-130. |
37 | 孙蒙蒙, 徐伟涛, 崔彤彤, 等. 预处理技术在生物质热裂解中的应用[J]. 林产工业, 2019, 46(2): 33-38. |
Sun M M, Xu W T, Cui T T, et al. Application of pretreatment technology in biomass pyrolysis[J]. China Forest Products Industry, 2019, 46(2): 33-38. | |
38 | Mattonai M, Pawcenis D, Del Seppia S, et al. Effect of ball-milling on crystallinity index, degree of polymerization and thermal stability of cellulose[J]. Bioresource Technology, 2018, 270: 270-277. |
39 | Xu F X, Zhang X, Zhang F, et al. TG-FTIR for kinetic evaluation and evolved gas analysis of cellulose with different structures[J]. Fuel, 2020, 268: 117365. |
40 | Al Shra'ah A, Helleur R. Microwave pyrolysis of cellulose at low temperature[J]. Journal of Analytical and Applied Pyrolysis, 2014, 105: 91-99. |
41 | 孙江纬, 郑安庆, 蒋丽群, 等. 有机酸预处理对桉木解构组分热解特性的影响[J]. 新能源进展, 2017, 5(3): 170-176. |
Sun J W, Zheng A Q, Jiang L Q, et al. Effect of organic acid-based organosolv fractionation of eucalyptus on pyrolysis behavior of its derived fractions[J]. Advances in New and Renewable Energy, 2017, 5(3): 170-176. | |
42 | Jiang L Q, Zheng A Q, Zhao Z L, et al. Obtaining fermentable sugars by dilute acid hydrolysis of hemicellulose and fast pyrolysis of cellulose[J]. Bioresource Technology, 2015, 182: 364-367. |
43 | David G F, Justo O R, Perez V H, et al. Thermochemical conversion of sugarcane bagasse by fast pyrolysis: high yield of levoglucosan production[J]. Journal of Analytical and Applied Pyrolysis, 2018, 133: 246-253. |
44 | Hassan E M, Steele P H, Ingram L. Characterization of fast pyrolysis bio-oils produced from pretreated pine wood[J]. Applied Biochemistry and Biotechnology, 2009, 154(1/2/3): 3-13. |
45 | Wyman C E, Dale B E, Elander R T, et al. Comparative sugar recovery data from laboratory scale application of leading pretreatment technologies to corn stover[J]. Bioresource Technology, 2005, 96(18): 2026-2032. |
46 | Jiang L Q, Fang Z, Zhao Z L, et al. 2, 3-Butanediol and acetoin production from enzymatic hydrolysate of ionic liquid-pretreated cellulose by Paenibacillus polymyxa[J]. BioResources, 2015, 10(1): 1318-1329. |
47 | Sheldrake G N, Schleck D. Dicationic molten salts (ionic liquids) as re-usable media for the controlled pyrolysis of cellulose to anhydrosugars[J]. Green Chemistry, 2007, 9(10): 1044. |
48 | Kudo S, Zhou Z W, Norinaga K, et al. Efficient levoglucosenone production by catalytic pyrolysis of cellulose mixed with ionic liquid[J]. Green Chemistry, 2011, 13(11): 3306-3311. |
49 | Auxenfans T, Buchoux S, Larcher D, et al. Enzymatic saccharification and structural properties of industrial wood sawdust: recycled ionic liquids pretreatments[J]. Energy Conversion and Management, 2014, 88: 1094-1103. |
50 | Pang Z Q, Dong C H, Pan X J. Enhanced deconstruction and dissolution of lignocellulosic biomass in ionic liquid at high water content by lithium chloride[J]. Cellulose, 2016, 23(1): 323-338. |
51 | Zheng A Q, Zhao K, Sun J W, et al. Effect of microwave-assisted organosolv fractionation on the chemical structure and decoupling pyrolysis behaviors of waste biomass[J]. Journal of Analytical and Applied Pyrolysis, 2018, 131: 120-127. |
52 | Jiang L Q, Zheng A Q, Zhao Z L, et al. Comprehensive utilization of glycerol from sugarcane bagasse pretreatment to fermentation[J]. Bioresource Technology, 2015, 196: 194-199. |
53 | Zheng A Q, Jiang L Q, Zhao Z L, et al. Effect of hydrothermal treatment on chemical structure and pyrolysis behavior of eucalyptus wood[J]. Energy & Fuels, 2016, 30(4): 3057-3065. |
54 | 唐爱民, 梁文芷. 纤维素预处理技术的发展[J]. 林产化学与工业, 1999, 19(4): 81-88. |
Tang A M, Liang W Z. The development of cellulose pretreatment techniques[J]. Chemistry and Industry of Forest Products, 1999, 19(4): 81-88. | |
55 | Biswas A K, Yang W H, Blasiak W. Steam pretreatment of Salix to upgrade biomass fuel for wood pellet production[J]. Fuel Processing Technology, 2011, 92(9): 1711-1717. |
56 | Kristensen J B, Thygesen L G, Felby C, et al. Cell-wall structural changes in wheat straw pretreated for bioethanol production[J]. Biotechnology for Biofuels, 2008, 1(1): 5. |
57 | Wang Z, Lu Q, Zhu X F, et al. Catalytic fast pyrolysis of cellulose to prepare levoglucosenone using sulfated zirconia[J]. ChemSusChem, 2011, 4(1): 79-84. |
58 | 曾叶霖. 预处理对生物质热解特性的影响研究[D]. 武汉: 华中科技大学, 2009. |
Zeng Y L. Study on the influence of pretreatment on biomass pyrolysis characteristics[D]. Wuhan: Huazhong University of Science and Technology, 2009. | |
59 | Mosier N. Features of promising technologies for pretreatment of lignocellulosic biomass[J]. Bioresource Technology, 2005, 96(6): 673-686. |
60 | Zeng Y L, Yang X W, Yu H B, et al. Comparative studies on thermochemical characterization of corn stover pretreated by white-rot and brown-rot fungi[J]. Journal of Agricultural and Food Chemistry, 2011, 59(18): 9965-9971. |
61 | Wang T P, Ai Y N, Peng L, et al. Pyrolysis characteristics of poplar sawdust by pretreatment of anaerobic fermentation[J]. Industrial Crops and Products, 2018, 125: 596-601. |
62 | Li Q, Steele P H, Yu F, et al. Pyrolytic spray increases levoglucosan production during fast pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2013, 100: 33-40. |
63 | 李攀, 王贤华, 龚维婷, 等. 微波加热条件下棉杆热解的产物特性分析[J]. 农业工程学报, 2013, 29(15): 200-206. |
Li P, Wang X H, Gong W T, et al. Property analysis of pyrolysis product from cotton stalk heating by microwave[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(15): 200-206. | |
64 | 李宗强. 秸秆湿式氧化技术实验研究[D]. 济南: 山东大学, 2011. |
Li Z Q. Experimental research on wet oxidation pretreatment of straw[D]. Jinan: Shandong University, 2011. | |
65 | Dalluge D L, Daugaard T, Johnston P, et al. Continuous production of sugars from pyrolysis of acid-infused lignocellulosic biomass[J]. Green Chemistry, 2014, 16(9): 4144-4155. |
66 | Dobele G, Dizhbite T, Rossinskaja G, et al. Pre-treatment of biomass with phosphoric acid prior to fast pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2003, 68/69: 197-211. |
67 | Fan Y Y, Zhang D Y, Zheng A Q, et al. Selective production of anhydrosugars and furfural from fast pyrolysis of corncobs using sulfuric acid as an inhibitor and catalyst[J]. Chemical Engineering Journal, 2019, 358: 743-751. |
68 | Zhang H Y, Meng X, Liu C, et al. Selective low-temperature pyrolysis of microcrystalline cellulose to produce levoglucosan and levoglucosenone in a fixed bed reactor[J]. Fuel Processing Technology, 2017, 167: 484-490. |
69 | Shaik S M, Sharratt P N, Tan R B H. Influence of selected mineral acids and alkalis on cellulose pyrolysis pathways and anhydrosaccharide formation[J]. Journal of Analytical and Applied Pyrolysis, 2013, 104: 234-242. |
70 | Long Y, Yu Y, Chua Y W, et al. Acid-catalysed cellulose pyrolysis at low temperatures[J]. Fuel, 2017, 193: 460-466. |
71 | Pecha B, Arauzo P, Garcia-Perez M. Impact of combined acid washing and acid impregnation on the pyrolysis of Douglas fir wood[J]. Journal of Analytical and Applied Pyrolysis, 2015, 114: 127-137. |
72 | David G F, Perez V H, Rodriguez Justo O, et al. Effect of acid additives on sugarcane bagasse pyrolysis: production of high yields of sugars[J]. Bioresource Technology, 2017, 223: 74-83. |
73 | Meng X, Zhang H Y, Liu C, et al. Comparison of acids and sulfates for producing levoglucosan and levoglucosenone by selective catalytic fast pyrolysis of cellulose using Py-GC/MS[J]. Energy & Fuels, 2016, 30(10): 8369-8376. |
74 | Cao F Z, Xia S P, Yang X W, et al. Lowering the pyrolysis temperature of lignocellulosic biomass by H2SO4 loading for enhancing the production of platform chemicals[J]. Chemical Engineering Journal, 2020, 385: 123809. |
75 | Azeez A M, Meier D, Odermatt J, et al. Effects of zeolites on volatile products of beech wood using analytical pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2011, 91(2): 296-302. |
76 | 陆强, 张栋, 朱锡锋. 四种金属氯化物对纤维素快速热解的影响(Ⅰ): Py-GC/MS实验[J]. 化工学报, 2010, 61(4): 1018-1024. |
Lu Q, Zhang D, Zhu X F. Catalytic effects of four metal chlorides on fast pyrolysis of cellulose(Ⅰ): Py-GC/MS experiments[J]. CIESC Journal, 2010, 61(4): 1018-1024. |
[1] | Qian WANG, Shenyong LI, Shuai KANG, Wei PANG, Longlong HAO, Shenjun QIN. Research progress of pretreatment technology for efficient utilization of coal ash [J]. CIESC Journal, 2023, 74(3): 1010-1032. |
[2] | Haihang TONG, Dezhi SHI, Jiayu LIU, Huayi CAI, Dan LUO, Fei CHEN. Research progress on dark fermentative bio-hydrogen production from lignocellulose assisted by metal nanoparticles [J]. CIESC Journal, 2022, 73(4): 1417-1435. |
[3] | Feixiang XU, Liqun JIANG, Anqing ZHENG, Zengli ZHAO. Carbon-based solid acid catalyzed the pyrolysis of cellulose to produce levoglucosan and levoglucosenone [J]. CIESC Journal, 2022, 73(3): 1166-1172. |
[4] | ZHANG Xi,ZHANG Lilong,LI Rui,WU Yulong. Life cycle assessment of straw fast pyrolysis based on energy integration [J]. CIESC Journal, 2021, 72(5): 2792-2800. |
[5] | YAN Beibei, WANG Jian, LIU Bin, CHEN Guanyi, CHENG Zhanjun. Research progress of bio-oil metal hydrothermal in-situ hydrogenation technology [J]. CIESC Journal, 2021, 72(4): 1783-1795. |
[6] | WEI Lihong, FAN Yu, FANG Fan, GUO Liangzhen, CHEN Yong, YANG Tianhua. Effect of sodium and mineral types on distribution of tar and BTEXN under high alkali coal fast pyrolysis [J]. CIESC Journal, 2021, 72(3): 1702-1711. |
[7] | ZHAO Jinzheng, ZHOU Guohui, LIU Xiaomin. Study on application and mechanism of ionic liquids in biomass dissolution and separation [J]. CIESC Journal, 2021, 72(1): 247-258. |
[8] | Kun XU, Yang FANG, Meng GONG, Yingquan CHEN, Xu CHEN, Xianhua WANG, Haiping YANG, Hanping CHEN. Study on the catalytic pyrolysis of glucose to prepare levoglucosenone [J]. CIESC Journal, 2020, 71(8): 3594-3601. |
[9] | Han ZHANG,Qian FU,Qiang LIAO,Ao XIA,Yun HUANG,Xianqing ZHU,Xun ZHU. Study on degradation kinetics of hemicellulose in wheat straw hydrothermal pretreatment [J]. CIESC Journal, 2020, 71(7): 3098-3105. |
[10] | Beiqiu CHEN, Chunxiang LIN, Yifan LIU, Yuancai LYU, Minghua LIU. Application of ionic liquid in preparation of nanocellulose [J]. CIESC Journal, 2020, 71(3): 903-913. |
[11] | Laizhi SUN, Lei CHEN, Baofeng ZHAO, Shuangxia YANG, Xinping XIE, Fanjun MENG, Hongyu SI. Experiment research on catalytic fast pyrolysis of biomass into bio-oils over Mo/ZSM-5 catalyst [J]. CIESC Journal, 2019, 70(8): 3160-3166. |
[12] | SONG Dihui, AN Luyang, ZHANG Litao, ZHANG Yafeng, XU Xinwei, WANG Yunan, WEI Huangzhao. Optimization of electrochemical coupling system process for coking waste water pretreatment by response surface method [J]. CIESC Journal, 2018, 69(9): 4001-4011. |
[13] | GAO Jing, ZHENG Caiju, TAN Tingru, ZHANG Di, LIU Shucheng, JI Hongwu. Effect of ionic liquid micro emulsion pretreatment on rice straw at ultra-high pressure [J]. CIESC Journal, 2018, 69(8): 3686-3692. |
[14] | LENG Erwei, GONG Xun, ZHANG Yang, XU Minghou. Progress of cellulose pyrolysis mechanism: cellulose evolution based on intermediate cellulose [J]. CIESC Journal, 2018, 69(1): 239-248. |
[15] | LOU Hongming, LIN Meilu, QIU Kexian, CAI Cheng, PANG Yuxia, YANG Dongjie, QIU Xueqing. Alkaline sulfite pretreatment of corncob residue and its reaction kinetic model [J]. CIESC Journal, 2018, 69(1): 507-514. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||