[1] |
ZHAO J L, CHEN X W, YAN B, et al. Estrogenic activity and identification of potential xenoestrogens in a coking wastewater treatment plant[J]. Ecotoxicology and Environmental Safety, 2015, 112:238-246.
|
[2] |
XIE D H, LI C C, TANG R, et al. Ion-exchange membrane bioelectrochemical reactor for removal of nitrate in the biological effluent from a coking Wastewater treatment plant[J]. Electrochemistry Communication, 2014, 46:99-102.
|
[3] |
孙怡, 于利亮, 黄浩斌, 等. 高级氧化技术处理难降解有机废水的研发趋势及实用化进展[J]. 化工学报, 2017, 68(5):1743-1756. SUN Y, YU L L, HUANG H B, et al. Research trend and practical development of advanced oxidation process on degradation of recalcitrant organic wastewater[J]. CIESC Journal, 2017, 68(5):1743-1756.
|
[4] |
NA C H, ZHANG Y, QUAN X, et al. Evaluation of the detoxification of coking wastewater treated by combined anaerobic-anoxic-oxic(A2O) and advanced oxidation process[J]. Hazardous Material, 2017, 338(15):186-193.
|
[5] |
WU X H, ZHANG Y, WU G M, et al. Simulation and optimization of a coking wastewater biological treatment process by activated sludge models(ASM)[J]. Journal of Environmental Management, 2016, 165(1):235-242.
|
[6] |
杜宪, 岳秀萍, 王孝维, 等. 厌氧复合床处理模拟焦化废水的反硝化动力学[J]. 化工学报, 2013, 64(7):2650-2655. DU X, YUE X P, WANG X W, et al. Denitrification dynamics of treating analog coking wastewater in upflow blanket filter[J]. CIESC Journal, 2013, 64(7):2650-2655.
|
[7] |
林琳, 李玉平, 曹宏斌, 等. 焦化废水厌氧氨氧化生物脱氮的研究[J]. 中国环境科学, 2010, 30(9):1201-1206. LIN L, LI Y P, CAO H B, et al. Anaerobic ammonium oxidation (ANAMMOX) for biological nitrogen removal from coking wastewater[J]. China Environmental Science, 2010, 30(9):1201-1206.
|
[8] |
ZHOU J, LI H S, CHEN X L, et al. Cometabolic degradation of low-strength coking wastewater and the bacterial community revealed by high-throughput sequencing[J]. Bioresource Technology, 2017, 245(Part A):379-385.
|
[9] |
LI X F, CHEN W Y, MA L M, et al. Industrial wastewater advanced treatment via catalytic ozonation with an Fe-based catalyst[J]. Chemosphere, 2018, 195:336-343.
|
[10] |
侯韦竹, 丁晶, 赵庆良, 等. 响应曲面法优化电氧化-絮凝耦合工艺深度处理垃圾渗滤液[J]. 中国环境科学, 2017, 37(3):948-956. HOU W Z, DING J, ZHAO Q L, et al. Optimization of electro-oxidation and electro-coagulation combination process for landfill leachate advanced treatment by response surface methodology[J]. China Environmental Science, 2017, 37(3):948-956.
|
[11] |
LI J F, WU J, SUN H F, et al. Advanced treatment of biologically treated coking wastewater by membrane distillation coupled with pre-coagulation[J]. Desalination, 2016, 380(15):43-51.
|
[12] |
LI X Y, XU J, CHENG J P, et al. TiO2-SiO2/GAC particles for enhanced electrocatalytic removal of acid orange 7(AO7) dyeing wastewater in a three-dimensional electrochemical reactor[J]. Separation and Purification Technology, 2017, 187(31):303-310.
|
[13] |
ZHENG T L, WANG Q H, SHI Z N, et al. Advanced treatment of wet-spun acrylic fiber manufacturing wastewater using three-dimensional electrochemical oxidation[J]. Environmental Sciences, 2016, 50:21-31.
|
[14] |
李云钊, 宋兴福, 孙玉柱, 等. 基于响应曲面法的反应-萃取-结晶工艺优化[J]. 化工学报, 2016, 67(2):588-597. LI Y Z, SONG X F, SUN Y Z, et al. Optimization of reactive extraction-crystallization process based on response surface methodology[J]. CIESC Journal, 2016, 67(2):588-597.
|
[15] |
蒋新生, 吕科宗, 魏树旺, 等. 基于响应曲面法的三相泡沫灭火剂基础配方优化设计[J]. 化工学报, 2017, 68(7):2886-2895. JIANG X S, LÜ K Z, WEI S W, et al. Optimal design of three phase fire-fighting foam formulation based on response surface methodology[J]. CIESC Journal, 2017, 68(7):2886-2895.
|
[16] |
BASHIR M J K, AZIZ H A, YUSOFF M S, et al. Application of response surface methodology(RSM) for optimization of ammoniacal nitrogen removal from semi-aerobic landfill leachate using ion exchange resin[J]. Desalination, 2010, 254(1/2/3):154-161.
|
[17] |
赵翠梅. 高性能电极材料及新型非对称超级电容器的研究[D]. 长春:吉林大学, 2014. ZHAO C M. Study of high-performance electrode materials and the novel asymmetric supercapacitors[D]. Changchun:Jilin University, 2014.
|
[18] |
丁杰, 宋迪慧, 刘先树, 等. 序批式复极性三维电催化反应器降解苯并噻唑的影响因素[J]. 环境工程学报, 2017, 6(11):140-147. DING J, SONG D H, LIU X S, et al. Effects of sequencing batch bipolar three-dimensional electrocatalytic reactor on benzothiazole degradation[J]. Chinese Journal of Environmental Engineering, 2017, 6(11):140-147.
|
[19] |
MARTINEZ J, ORTIZ A, ORTIZ I. State-of-the-art and perspectives of the catalytic and electrocatalytic reduction of aqueous nitrates[J]. Applied Catalysis B:Environmental, 2017, 207(15):42-59.
|
[20] |
黄力华. 石墨烯修饰电极强化微生物燃料电池性能研究[D]. 无锡:江南大学, 2017. HUANG L H. Study on the performance of microbial fuel cell strengthened by graphene modified electrode[D]. Wuxi:Jiangnan University, 2017.
|
[21] |
PANG F, SONG F E, ZHANG Q D, et al. Study on the influence of oxygen-containing groups on the performance of Ni/AC catalysts in methanol vapor-phase carbonylation[J]. Chemical Engineering, 2016, 293(1):129-138.
|
[22] |
SUN P, ZHANG B, ZENG X B, et al. Deep study on effects of activated carbon's oxygen functional groups for elemental mercury adsorption using temperature programmed desorption method[J]. Fuel, 2017, 200(15):100-106.
|
[23] |
LI J, LIU Q, JI Q Q, et al. Degradation of p-nitrophenol(PNP) in aqueous solution by Fe0-PM-PS system through response surface methodology(RSM)[J]. Applied Catalysis B:Environmental, 2017, 200:633-646.
|
[24] |
WANG Y M, WEI H Z, ZHAO Y, et al. Low temperature modified sludge-derived carbon catalysts for efficient catalytic wet peroxide oxidation of m-cresol[J]. Green Chemistry, 2017, 19:1362-1370.
|
[25] |
SINGH J, YANG J K, CHANG Y Y. Rapid degradation of phenol by ultrasound-dispersed nano-metallic particles(NMPs) in the presence of hydrogen peroxide:a possible mechanism for phenol degradation in water[J]. Environmental Management, 2018, 175(15):60-65.
|
[26] |
SVOBODA L, PRAUS P, LIMA M J, et al. Graphitic carbon nitride nanosheets as highly efficient photocatalysts for phenol degradation under high-power visible LED irradiation[J]. Materials Research Bulletin, 2018, 100:322-332.
|
[27] |
CIEZAK-JENKINS J A. High-pressure polymorphism of the electrochemically active organic molecule tetrahydroxy-p-benzoquinone[J]. Molecular Structure, 2016, 1119(5):71-77.
|
[28] |
CHEN S Y, YAN R, ZHANG X L, et al. Photogenerated electron modulation to dominantly induce efficient 2, 4-dichlorophenol degradation on BiOBr nanoplates with different phosphate modification[J]. Applied Catalysis B:Environmental, 2017, 209(15):320-328.
|
[29] |
CHU L B, YU S Q, WANG J L. Degradation of pyridine and quinoline in aqueous solution by gamma radiation[J]. Radiation Physics and Chemistry, 2017, 144:322-328.
|
[30] |
魏琳. 工业难降解有机污染物的电化学氧化处理方法研究[D]. 武汉:武汉大学, 2011. WEI L. Study on electrochemical oxidation treatment of industrial organic pollutants[D]. Wuhan:Wuhan University, 2011.
|
[31] |
郭莹, 陈鸿汉, 张焕祯, 等. 基于Box-Behnken响应曲面法优化Fenton预处理高浓度燃料中间体生产废水[J]. 环境科学研究, 2017, 30(5):775-783. GUO Y, CHEN H H, ZHANG H Z, et al. Optimization of Fenton pre-treatment of high concentration dye intermediate wastewater based on Box-Behnken response surface methodology[J]. Research of Environmental Sciences, 2017, 30(5):775-783.
|
[32] |
NOSUHI M, NEZAMZADEH-EJHIEH A. High catalytic activity of Fe(Ⅱ)-clinoptilolite nanoparticales for indirect voltammetric determination of dichromate:experimental design by response surface methodology(RSM)[J]. Electrochimica Acta, 2017, 223(1):47-62.
|