CIESC Journal ›› 2021, Vol. 72 ›› Issue (8): 4215-4226.DOI: 10.11949/0438-1157.20210019
• Process system engineering • Previous Articles Next Articles
Shuqi TANG1(),Cuimei BO1(),Hui YU1,Jun LI1,Dengfeng ZHANG2,Quanling ZHANG2,Xiaoming JIN3
Received:
2021-01-08
Revised:
2021-05-06
Online:
2021-08-05
Published:
2021-08-05
Contact:
Cuimei BO
汤舒淇1(),薄翠梅1(),俞辉1,李俊1,张登峰2,张泉灵2,金晓明3
通讯作者:
薄翠梅
作者简介:
汤舒淇(1995—),女,硕士研究生,基金资助:
CLC Number:
Shuqi TANG, Cuimei BO, Hui YU, Jun LI, Dengfeng ZHANG, Quanling ZHANG, Xiaoming JIN. Unfixed terminal economic optimization and control for fed-batch reaction process[J]. CIESC Journal, 2021, 72(8): 4215-4226.
汤舒淇, 薄翠梅, 俞辉, 李俊, 张登峰, 张泉灵, 金晓明. 分批补料反应过程的非固定终端经济优化控制[J]. 化工学报, 2021, 72(8): 4215-4226.
Add to citation manager EndNote|Ris|BibTeX
变量 | 数值 | 单位 | 变量 | 数值 | 单位 |
---|---|---|---|---|---|
k0 | 4×104 | m3/(s?kmol) | 8.01 | kmol/m3 | |
Fin,0 | 0 | m3/s | 0 | kmol/m3 | |
Tin | 350 | K | 0 | kmol/m3 | |
8.01 | kmol/m3 | 11.3097 | m3 | ||
0 | kmol/m3 | 350 | K | ||
0 | kmol/m3 | 350 | K | ||
0 | m3/s | θa | 0.558 | CNY/mol | |
350 | K | θb | 0.066 | CNY/mol | |
DR | 2 | m | θc | 1.075 | CNY/mol |
Vj | 2.5133 | m3 | θj | 5×10-3 | CNY/kg |
12.56 | m3 | 0.23 | kJ/(kmol?K) | ||
0 | m3 | 0.102 | kJ/(kmol?K) | ||
475 | K | 181.67 | kJ/(kmol?K) | ||
350 | K | 4.183 | kJ/(kg?K) | ||
Fjmax | 0.005 | m3/s | ρj | 1000 | kg/m3 |
Fjmin | 0 | m3/s | ?HR | 46.49×103 | kJ/kmol |
Fin,max | 8.739×10-5 | m3/s | Utrans | 0.851 | kW/(m2?K) |
Fin,min | 0 | m3/s |
Table 1 Process, initial and boundary conditions, reactor structure data, and economic value of components
变量 | 数值 | 单位 | 变量 | 数值 | 单位 |
---|---|---|---|---|---|
k0 | 4×104 | m3/(s?kmol) | 8.01 | kmol/m3 | |
Fin,0 | 0 | m3/s | 0 | kmol/m3 | |
Tin | 350 | K | 0 | kmol/m3 | |
8.01 | kmol/m3 | 11.3097 | m3 | ||
0 | kmol/m3 | 350 | K | ||
0 | kmol/m3 | 350 | K | ||
0 | m3/s | θa | 0.558 | CNY/mol | |
350 | K | θb | 0.066 | CNY/mol | |
DR | 2 | m | θc | 1.075 | CNY/mol |
Vj | 2.5133 | m3 | θj | 5×10-3 | CNY/kg |
12.56 | m3 | 0.23 | kJ/(kmol?K) | ||
0 | m3 | 0.102 | kJ/(kmol?K) | ||
475 | K | 181.67 | kJ/(kmol?K) | ||
350 | K | 4.183 | kJ/(kg?K) | ||
Fjmax | 0.005 | m3/s | ρj | 1000 | kg/m3 |
Fjmin | 0 | m3/s | ?HR | 46.49×103 | kJ/kmol |
Fin,max | 8.739×10-5 | m3/s | Utrans | 0.851 | kW/(m2?K) |
Fin,min | 0 | m3/s |
参数 | 对应变量 | |||||
---|---|---|---|---|---|---|
Fj | Fin | |||||
β | 1.12564×107 | 2.12×1011 | ||||
Nu | 4 | 6 | ||||
ΔTu | 60 s | 50 s | ||||
Ca | Cb | Cc | VR | TR | ||
α | 0 | 0 | 0 | 0 | 0 | 2.3125×10-5 |
Table 2 Tuning parameter settings of the optimized control
参数 | 对应变量 | |||||
---|---|---|---|---|---|---|
Fj | Fin | |||||
β | 1.12564×107 | 2.12×1011 | ||||
Nu | 4 | 6 | ||||
ΔTu | 60 s | 50 s | ||||
Ca | Cb | Cc | VR | TR | ||
α | 0 | 0 | 0 | 0 | 0 | 2.3125×10-5 |
参数 | 无扰动 | 有扰动 | ||
---|---|---|---|---|
Optimized control | PI control | Optimized control | PI control | |
Tf /min | 123.87 | 145.17 | 164.68 | 190.97 |
净收入/CNY | 2.47×104 | 2.84×104 | 1.84×104 | 1.56×104 |
平均收益/(CNY/min) | 199.40 | 195.63 | 111.73 | 81.69 |
Table 3 Economic profitability of two kinds of control
参数 | 无扰动 | 有扰动 | ||
---|---|---|---|---|
Optimized control | PI control | Optimized control | PI control | |
Tf /min | 123.87 | 145.17 | 164.68 | 190.97 |
净收入/CNY | 2.47×104 | 2.84×104 | 1.84×104 | 1.56×104 |
平均收益/(CNY/min) | 199.40 | 195.63 | 111.73 | 81.69 |
1 | Lu P C, Chen J, Xie L. Iterative learning control (ILC)-based economic optimization for batch processes using helpful disturbance information[J]. Industrial & Engineering Chemistry Research, 2018, 57(10): 3717-3731. |
2 | Bonvin D. Optimal operation of batch reactors—a personal view[J]. Journal of Process Control, 1998, 8(5/6): 355-368. |
3 | Cao Z X, Dürr H B, Ebenbauer C, et al. Iterative learning and extremum seeking for repetitive time-varying mappings[J]. IEEE Transactions on Automatic Control, 2017, 62(7): 3339-3353. |
4 | Lee K S, Chin I S, Lee H J, et al. Model predictive control technique combined with iterative learning for batch processes[J]. AIChE Journal, 1999, 45(10): 2175-2187. |
5 | Schorsch J, Castro C C, Couto L D, et al. Optimal control for fermentative production of fructo-oligosaccharides in fed-batch bioreactor[J]. Journal of Process Control, 2019, 78: 124-138. |
6 | Senthil S A, Sundaramoorthy S. Optimal control policy for tracking optimal progression of temperature in a batch reactor — some insights into the choice of objective function[J]. IFAC-PapersOnLine, 2018, 51(1): 112-117. |
7 | 杨国军. 间歇化工过程实时优化与控制[D]. 广州: 华南理工大学, 2013. |
Yang G J. Real-time optimization and control of batch processes[D]. Guangzhou: South China University of Technology, 2013. | |
8 | 李海波, 潘丰. 补料分批发酵过程动态优化控制研究[J]. 控制工程, 2019, 26(10): 1950-1954. |
Li H B, Pan F. Study on dynamic optimal control of fed-batch fermentation process[J]. Control Engineering of China, 2019, 26(10): 1950-1954. | |
9 | Lucia S, Andersson J A E, Brandt H, et al. Efficient robust economic nonlinear model predictive control of an industrial batch reactor[J]. IFAC Proceedings Volumes, 2014, 47(3): 11093-11098. |
10 | Yuan J L, Liu C Y, Zhang X, et al. Optimal control of a batch fermentation process with nonlinear time-delay and free terminal time and cost sensitivity constraint[J]. Journal of Process Control, 2016, 44: 41-52. |
11 | Zhao C H, Mo S Y, Gao F R, et al. Statistical analysis and online monitoring for handling multiphase batch processes with varying durations[J]. Journal of Process Control, 2011, 21(6): 817-829. |
12 | 刘井响. 数据驱动的非线性批次/多规格生产过程监测与质量预测[D]. 大连: 大连理工大学, 2019. |
Liu J X. Data-driven monitoring and quality prediction for nonlinear batch/multi-grade productive processes[D]. Dalian: Dalian University of Technology, 2019. | |
13 | Cao Z X, Gondhalekar R, Dassau E, et al. Extremum seeking control for personalized zone adaptation in model predictive control for type 1 diabetes[J]. IEEE Transactions on Biomedical Engineering, 2018, 65(8): 1859-1870. |
14 | de Prada C, Cristea S P, Mazaeda R. Hierarchical optimal operation of continuous-batch processes[J]. IFAC-PapersOnLine, 2015, 48(23): 294-301. |
15 | 李国栋, 胡云卿, 刘兴高. 一种高效的快速近似控制向量参数化方法[J]. 自动化学报, 2015, 41(1): 67-74. |
Li G D, Hu Y Q, Liu X G. An efficient fast approximate control vector parameterization method[J]. Acta Automatica Sinica, 2015, 41(1): 67-74. | |
16 | Würth L, Hannemann R, Marquardt W. A two-layer architecture for economically optimal process control and operation[J]. Journal of Process Control, 2011, 21(3): 311-321. |
17 | Alamo T, Ferramosca A, González A H, et al. A gradient-based strategy for the one-layer RTO + MPC controller[J]. Journal of Process Control, 2014, 24(4): 435-447. |
18 | Jang H, Lee J H, Biegler L T. A robust NMPC scheme for semi-batch polymerization reactors[J]. IFAC-PapersOnLine, 2016, 49(7): 37-42. |
19 | Cheng G M, Wang L, Loxton R, et al. Robust optimal control of a microbial batch culture process[J]. Journal of Optimization Theory and Applications, 2015, 167(1): 342-362. |
20 | Rossi F, Manenti F, Pirola C, et al. A robust sustainable optimization & control strategy (RSOCS) for (fed-)batch processes towards the low-cost reduction of utilities consumption[J]. Journal of Cleaner Production, 2016, 111: 181-192. |
21 | Adetola V, Guay M. Integration of real-time optimization and model predictive control[J]. Journal of Process Control, 2010, 20(2): 125-133. |
22 | del Rio-Chanona E A, Zhang D D, Vassiliadis V S. Model-based real-time optimisation of a fed-batch cyanobacterial hydrogen production process using economic model predictive control strategy[J]. Chemical Engineering Science, 2016, 142: 289-298. |
23 | Heidarinejad M, Liu J F, Christofides P D. Economic model predictive control of nonlinear process systems using Lyapunov techniques[J]. AIChE Journal, 2012, 58(3): 855-870. |
24 | 何德峰. 约束非线性系统稳定经济模型预测控制[J]. 自动化学报, 2016, 42(11): 1680-1690. |
He D F. Stabilizing economic model predictive control of constrained nonlinear systems[J]. Acta Automatica Sinica, 2016, 42(11): 1680-1690. | |
25 | Wei M, Yang M L, Qian F, et al. Dynamic modeling and economic model predictive control with production mode switching for an industrial catalytic naphtha reforming process[J]. Industrial & Engineering Chemistry Research, 2017, 56(31): 8961-8971. |
26 | Müller M A, Grüne L. Economic model predictive control without terminal constraints for optimal periodic behavior[J]. Automatica, 2016, 70: 128-139. |
27 | 陆鹏程. 间歇生产过程经济模型预测控制理论与应用[D]. 杭州: 浙江大学, 2019. |
Lu P C. Theory and application of economic model predictive control for batch processes[D]. Hangzhou: Zhejiang University, 2019. | |
28 | Luyben W L. Chemical Reactor Design and Control[M]. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. |
29 | Pahija E, Manenti F, Mujtaba I M, et al. Assessment of control techniques for the dynamic optimization of (semi-)batch reactors[J]. Computers & Chemical Engineering, 2014, 66: 269-275. |
30 | 尹俊华, 薄翠梅, 刘艳萍, 等. 基于Markov参数整定的自适应迭代学习PID控制[J]. 高校化学工程学报, 2019, 33(6): 1490-1498. |
Yin J H, Bo C M, Liu Y P, et al. Adaptive iterative learning PID control based on Markov parameter tuning[J]. Journal of Chemical Engineering of Chinese Universities, 2019, 33(6): 1490-1498. | |
31 | 杨磊, 薄翠梅, 李俊, 等. 半间歇化学反应过程的二维迭代学习PI控制方法[J]. 高校化学工程学报, 2018, 32(6): 1403-1411. |
Yang L, Bo C M, Li J, et al. A two dimensional iterative learning PI control method for a batch reaction process[J]. Journal of Chemical Engineering of Chinese Universities, 2018, 32(6): 1403-1411. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||