CIESC Journal ›› 2021, Vol. 72 ›› Issue (12): 5955-5964.DOI: 10.11949/0438-1157.20210925
• Reviews and monographs • Previous Articles Next Articles
An CHEN(),Guangsheng LUO,Jianhong XU()
Received:
2021-07-05
Revised:
2021-09-23
Online:
2021-12-22
Published:
2021-12-05
Contact:
Jianhong XU
通讯作者:
徐建鸿
作者简介:
陈安(1994—),男,博士,基金资助:
CLC Number:
An CHEN, Guangsheng LUO, Jianhong XU. Research progress on quantitative exploration of the interaction mechanism between droplets[J]. CIESC Journal, 2021, 72(12): 5955-5964.
陈安, 骆广生, 徐建鸿. 液滴间相互作用机制定量探究的研究进展[J]. 化工学报, 2021, 72(12): 5955-5964.
Add to citation manager EndNote|Ris|BibTeX
Fig.4 Schematic diagram of atomic force microscope measuring the interaction force between droplets (a); The dynamic interaction force curves between droplets varies with the moving distance of the photoelectric probe of the atomic force microscope under different surfactant concentrations [0.1 mmol/L(b); 3.0 mmol/L(c); 10.0 mmol/L(d)][10]
Fig.7 The interaction forces between SiO2 particles in NaCl and CTAB solutions[54] (The solid lines represent the calculation result of the theoretical model, and the hollow circles represent the experimental result of the optical tweezers measurement)
测量工具 | 适用体系 | 测量量级 | 优势 | 不足 |
---|---|---|---|---|
表面力仪 | 两个平面 | nN | 直接测量出两平面间绝对分离距离 | 无法直接测量液滴间相互作用 |
原子力显微镜 | 20~200 μm液滴 | nN | 直接定量测量液滴间相互作用力,有成熟的理论模型 | 难以实现微米级液滴的捕获和准确测量 |
光镊 | 0.1~10 μm液滴/粒子 | pN | 直接定量测量微米级液滴间相互作用力 | 研究较少,缺乏理论模型支撑 |
Table 1 Comparison of quantitative measurement tools[10, 30, 35, 50-53]
测量工具 | 适用体系 | 测量量级 | 优势 | 不足 |
---|---|---|---|---|
表面力仪 | 两个平面 | nN | 直接测量出两平面间绝对分离距离 | 无法直接测量液滴间相互作用 |
原子力显微镜 | 20~200 μm液滴 | nN | 直接定量测量液滴间相互作用力,有成熟的理论模型 | 难以实现微米级液滴的捕获和准确测量 |
光镊 | 0.1~10 μm液滴/粒子 | pN | 直接定量测量微米级液滴间相互作用力 | 研究较少,缺乏理论模型支撑 |
1 | Benichou A, Aserin A, Garti N. Protein-polysaccharide interactions for stabilization of food emulsions[J]. Journal of Dispersion Science and Technology, 2002, 23(1/2/3): 93-123. |
2 | Ge X H, Huang J P, Xu J H, et al. Controlled stimulation-burst targeted release by smart decentered core-shell microcapsules in gravity and magnetic field[J]. Lab on a Chip, 2014, 14(23): 4451-4454. |
3 | Lissant K J, Peace B W, Wu S H, et al. Structure of high-internal-phase-ratio emulsions[J]. Journal of Colloid and Interface Science, 1974, 47(2): 416-423. |
4 | Gallarate M, Carlotti M E, Trotta M, et al. On the stability of ascorbic acid in emulsified systems for topical and cosmetic use[J]. International Journal of Pharmaceutics, 1999, 188(2): 233-241. |
5 | Lee D H, Goh Y M, Kim J S, et al. Effective formation of silicone-in-fluorocarbon-in-water double emulsions: studies on droplet morphology and stability[J]. Journal of Dispersion Science and Technology, 2002, 23(4): 491-497. |
6 | Laugel C, Baillet A, Youenang Piemi M P, et al. Oil-water-oil multiple emulsions for prolonged delivery of hydrocortisone after topical application: comparison with simple emulsions[J]. International Journal of Pharmaceutics, 1998, 160(1): 109-117. |
7 | Laugel C, Rafidison P, Potard G, et al. Modulated release of triterpenic compounds from a O/W/O multiple emulsion formulated with dimethicones: infrared spectrophotometric and differential calorimetric approaches[J]. Journal of Controlled Release, 2000, 63(1/2): 7-17. |
8 | Jiang S, Chen Q, Tripathy M, et al. Janus particle synthesis and assembly[J]. Advanced Materials, 2010, 22(10): 1060-1071. |
9 | Martínez-Palou R, Reyes J, Cerón-Camacho R, et al. Study of the formation and breaking of extra-heavy-crude-oil-in-water emulsions—a proposed strategy for transporting extra heavy crude oils[J]. Chemical Engineering and Processing: Process Intensification, 2015, 98: 112-122. |
10 | Dagastine R R. Dynamic forces between two deformable oil droplets in water[J]. Science, 2006, 313(5784): 210-213. |
11 | Israelachvili J N. Strong intermolecular forces[M]//Intermolecular and Surface Forces. Amsterdam: Elsevier, 2011: 53-70. |
12 | 崔正刚. 表面活性剂、胶体与界面化学基础[M]. 北京: 化学工业出版社, 2013. |
Cui Z G. Fundamentals of Surfactants, Colloids, and Interface Chemistry[M]. Beijing: Chemical Industry Press, 2013. | |
13 | Scamehorn J F. An overview of phenomena involving surfactant mixtures[C]//ACS Symposium Series. Washington, DC: American Chemical Society, 1986: 1-27. |
14 | Tucker I M, Petkov J T, Jones C, et al. Adsorption of polymer–surfactant mixtures at the oil-water interface[J]. Langmuir, 2012, 28(42): 14974-14982. |
15 | Aveyard R, Binks B P, Clint J H. Emulsions stabilised solely by colloidal particles[J]. Advances in Colloid and Interface Science, 2003, 100/101/102: 503-546. |
16 | Yang F, Liu S Y, Xu J, et al. Pickering emulsions stabilized solely by layered double hydroxides particles: the effect of salt on emulsion formation and stability[J]. Journal of Colloid and Interface Science, 2006, 302(1): 159-169. |
17 | Chevalier Y, Bolzinger M A. Emulsions stabilized with solid nanoparticles: pickering emulsions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 439: 23-34. |
18 | Gromer A, Penfold R, Gunning A P, et al. Molecular basis for the emulsifying properties of sugar beet pectin studied by atomic force microscopy and force spectroscopy[J]. Soft Matter, 2010, 6(16): 3957. |
19 | Manor O, Chau T T, Stevens G W, et al. Polymeric stabilized emulsions: steric effects and deformation in soft systems[J]. Langmuir, 2012, 28(10): 4599-4604. |
20 | Israelachvili J, Min Y, Akbulut M, et al. Recent advances in the surface forces apparatus (SFA) technique[J]. Reports on Progress in Physics, 2010, 73(3): 036601. |
21 | de Aguiar H B, McGraw J D, Donaldson S H. Interface-sensitive Raman microspectroscopy of water via confinement with a multimodal miniature surface forces apparatus[J]. Langmuir, 2019, 35(48): 15543-15551. |
22 | Lockie H J, Manica R, Stevens G W, et al. Precision AFM measurements of dynamic interactions between deformable drops in aqueous surfactant and surfactant-free solutions[J]. Langmuir, 2011, 27(6): 2676-2685. |
23 | Dong P F, Xu J H, Zhao H, et al. Preparation of 10 μm scale monodispersed particles by jetting flow in coaxial microfluidic devices[J]. Chemical Engineering Journal, 2013, 214: 106-111. |
24 | Ashkin A. Trapping of atoms by resonance radiation pressure[J]. Physical Review Letters, 1978, 40(12): 729-732. |
25 | Liu X H, Ma B G, Tan H B, et al. Effect of aluminum sulfate on the hydration of Portland cement, tricalcium silicate and tricalcium aluminate[J]. Construction and Building Materials, 2020, 232: 117179. |
26 | Tadros T. Application of rheology for assessment and prediction of the long-term physical stability of emulsions[J]. Advances in Colloid and Interface Science, 2004, 108/109: 227-258. |
27 | McClements D J. Critical review of techniques and methodologies for characterization of emulsion stability[J]. Critical Reviews in Food Science and Nutrition, 2007, 47(7): 611-649. |
28 | Nilsen-Nygaard J, Sletmoen M, Draget K I. Stability and interaction forces of oil-in-water emulsions as observed by optical tweezers-a proof-of-concept study [J]. RSC Adv., 2014, 4(94): 52220-52229. |
29 | Israelachvili J N, Tabor D. The measurement of van der Waals dispersion forces in the range 1.5 to 130 nm[J]. Proceedings of the Royal Society of London A Mathematical and Physical Sciences, 1972, 331(1584): 19-38. |
30 | Kristiansen K, Donaldson S H, Berkson Z J, et al. Multimodal miniature surface forces apparatus (μSFA) for interfacial science measurements[J]. Langmuir, 2019, 35(48): 15500-15514. |
31 | Gould S A C, Burke K, Hansma P K. Simple theory for the atomic-force microscope with a comparison of theoretical and experimental images of graphite[J]. Physical Review B, 1989, 40(8): 5363-5366. |
32 | Zhang L Q, Yang T T, Du C C, et al. Lithium whisker growth and stress generation in an in situ atomic force microscope-environmental transmission electron microscope set-up[J]. Nature Nanotechnology, 2020, 15(2): 94-98. |
33 | Shi C, Zhang L, Xie L, et al. Interaction mechanism of oil-in-water emulsions with asphaltenes determined using droplet probe AFM[J]. Langmuir, 2016, 32(10): 2302-2310. |
34 | Shi C, Yan B, Xie L, et al. Long-range hydrophilic attraction between water and polyelectrolyte surfaces in oil[J]. Angewandte Chemie International Edition, 2016, 55(48): 15017-15021. |
35 | Ashkin A. Acceleration and trapping of particles by radiation pressure[J]. Physical Review Letters, 1970, 24(4): 156-159. |
36 | Essiambre R J. Arthur Ashkin: father of the optical tweezers[J]. PNAS, 2021, 118(7): e2026827118. |
37 | Neuman K C, Block S M. Optical trapping[J]. Review of Scientific Instruments, 2004, 75(9): 2787-2809. |
38 | Lang M J, Block S M. Resource letter: LBOT-1: laser-based optical tweezers[J]. American Journal of Physics, 2003, 71(3): 201-215. |
39 | Chantakit T, Schlickriede C, Sain B, et al. All-dielectric silicon metalens for two-dimensional particle manipulation in optical tweezers[J]. Photonics Research, 2020, 8(9): 1435. |
40 | Chen A, Liu X Y, Wu Y X, et al. Interactions between CO2-responsive switchable emulsion droplets determined by using optical tweezers[J]. Langmuir, 2020, 36(17): 4600-4606. |
41 | Gorkowski K, Donahue N M, Sullivan R C. Aerosol optical tweezers constrain the morphology evolution of liquid-liquid phase-separated atmospheric particles[J]. Chem., 2020, 6(1): 204-220. |
42 | Lv X J, Chen Z, Ma J B, et al. Evaporation of mixed citric acid/(NH4)2SO4/H2O particles: volatility of organic aerosol by using optical tweezers[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 226: 117552. |
43 | Zhu X M, Li N, Yang J Y, et al. Displacement detection decoupling in counter-propagating dual-beams optical tweezers with large-sized particle[J]. Sensors, 2020, 20(17): 4916. |
44 | Dey R, Ghosh S, Kundu A, et al. Simultaneous random number generation and optical tweezers calibration employing a learning algorithm based on the Brownian dynamics of a trapped colloidal particle[J]. Frontiers in Physics, 2021, 8: 576948. |
45 | Liu S, Hu Y, Xia J, et al. In situ measurement of depletion caused by SDBS micelles on the surface of silica particles using optical tweezers[J]. Langmuir, 2019, 35(42): 13536-13542. |
46 | Adamczyk Z, Weroński P. Application of the DLVO theory for particle deposition problems[J]. Advances in Colloid and Interface Science, 1999, 83(1/2/3): 137-226. |
47 | Churaev N V. The DLVO theory in Russian colloid science[J]. Advances in Colloid and Interface Science, 1999, 83(1/2/3): 19-32. |
48 | Croll S. DLVO theory applied to TiO2 pigments and other materials in latex paints[J]. Progress in Organic Coatings, 2002, 44(2): 131-146. |
49 | Boinovich L. DLVO forces in thin liquid films beyond the conventional DLVO theory[J]. Current Opinion in Colloid & Interface Science, 2010, 15(5): 297-302. |
50 | Chen A, Jing Y, Sang F N, et al. Determination of the interaction mechanism of 10 µm oil-in-water emulsion droplets using optical tweezers[J]. Chemical Engineering Science, 2018, 181: 341-347. |
51 | Chen A, Li S W, Sang F N, et al. Interactions between micro-scale oil droplets in aqueous surfactant solution determined using optical tweezers[J]. Journal of Colloid and Interface Science, 2018, 532: 128-135. |
52 | Chen A, Li S W, Jing D, et al. Interactions between colliding oil drops coated with non-ionic surfactant determined using optical tweezers[J]. Chemical Engineering Science, 2019, 193: 276-281. |
53 | Chen A, Li S W, Xu J H. A novel approach to study the interactions between polymeric stabilized micron-sized oil droplets by optical tweezers[J]. Chinese Journal of Chemical Engineering, 2020, 28(5): 1368-1374. |
54 | Chen A, Wang F J, Zhou Y W, et al. In situ measurements of interactions between switchable surface-active colloid particles using optical tweezers[J]. Langmuir, 2020, 36(17): 4664-4670. |
55 | Abbondanzieri E A, Greenleaf W J, Shaevitz J W, et al. Direct observation of base-pair stepping by RNA polymerase[J]. Nature, 2005, 438(7067): 460-465. |
56 | Zhong M C, Wei X B, Zhou J H, et al. Trapping red blood cells in living animals using optical tweezers[J]. Nature Communications, 2013, 4: 1768. |
57 | Yehoshua S, Pollari R, Milstein J N. Axial optical traps: a new direction for optical tweezers[J]. Biophysical Journal, 2015, 108(12): 2759-2766. |
58 | Killian J L, Ye F, Wang M D. Optical tweezers: a force to be reckoned with[J]. Cell, 2018, 175(6): 1445-1448. |
59 | Bernecker C, Lima M A R B F, Ciubotaru C D, et al. Biomechanics of ex vivo-generated red blood cells investigated by optical tweezers and digital holographic microscopy[J]. Cells, 2021, 10(3): 552. |
60 | Balasuriya T S, Dagastine R R. Interaction forces between bubbles in the presence of novel responsive peptide surfactants[J]. Langmuir, 2012, 28(50): 17230-17237. |
61 | Tabor R F, Wu C, Grieser F, et al. Measurement of the hydrophobic force in a soft matter system[J]. The Journal of Physical Chemistry Letters, 2013, 4(22): 3872-3877. |
62 | Mettu S, Zhou M F, Tardy B L, et al. Temperature dependent mechanical properties of air, oil and water filled microcapsules studied by atomic force microscopy[J]. Polymer, 2016, 102: 333-341. |
63 | Mettu S, Berry J D, Dagastine R R. Charge and film drainage of colliding oil drops coated with the nonionic surfactant C12E5[J]. Langmuir, 2017, 33(20): 4913-4923. |
64 | Shi C, Chan D Y C, Liu Q X, et al. Probing the hydrophobic interaction between air bubbles and partially hydrophobic surfaces using atomic force microscopy[J]. The Journal of Physical Chemistry C, 2014, 118(43): 25000-25008. |
65 | Cui X, Shi C, Xie L, et al. Probing interactions between air bubble and hydrophobic polymer surface: impact of solution salinity and interfacial nanobubbles[J]. Langmuir, 2016, 32(43): 11236-11244. |
66 | Wang J Y, Li J M, Xie L, et al. Interactions between elemental selenium and hydrophilic/hydrophobic surfaces: direct force measurements using AFM[J]. Chemical Engineering Journal, 2016, 303: 646-654. |
67 | Shi C, Zhang L, Xie L, et al. Surface interaction of water-in-oil emulsion droplets with interfacially active asphaltenes[J]. Langmuir, 2017, 33(5): 1265-1274. |
68 | Xie L, Shi C, Cui X, et al. Surface forces and interaction mechanisms of emulsion drops and gas bubbles in complex fluids[J]. Langmuir, 2017, 33(16): 3911-3925. |
69 | Zeng H B, Wu K L, Cui X, et al. Wettability effect on nanoconfined water flow: insights and perspectives[J]. Nano Today, 2017, 16: 7-8. |
70 | Cui X, Liu J, Xie L, et al. Modulation of hydrophobic interaction by mediating surface nanoscale structure and chemistry, not monotonically by hydrophobicity[J]. Angewandte Chemie International Edition, 2018, 57(37): 11903-11908. |
71 | Mao X H, Gong L, Xie L, et al. Novel Fe3O4 based superhydrophilic core-shell microspheres for breaking asphaltenes-stabilized water-in-oil emulsion[J]. Chemical Engineering Journal, 2019, 358: 869-877. |
[1] | Junfeng LU, Huaiyu SUN, Yanlei WANG, Hongyan HE. Molecular understanding of interfacial polarization and its effect on ionic liquid hydrogen bonds [J]. CIESC Journal, 2023, 74(9): 3665-3680. |
[2] | Yuanliang ZHANG, Xinqi LUAN, Weige SU, Changhao LI, Zhongxing ZHAO, Liqin ZHOU, Jianmin CHEN, Yan HUANG, Zhenxia ZHAO. Study on selective extraction of nicotine by ionic liquids composite extractant and DFT calculation [J]. CIESC Journal, 2023, 74(7): 2947-2956. |
[3] | Hao XIONG, Xiaoyu LIANG, Chenxi ZHANG, Haolong BAI, Xiaoyu FAN, Fei WEI. Heavy oil to chemicals: multi-stage downer catalytic pyrolysis [J]. CIESC Journal, 2023, 74(1): 86-104. |
[4] | Lingfei KONG, Yanpei CHEN, Wei WANG. Dynamic study of mesoscale structures of particles in gas-solid fluidization [J]. CIESC Journal, 2022, 73(6): 2486-2495. |
[5] | Wenjie LAN, Xiaojie HU, Dizong CAI. Determination of interaction force between droplet and solid surface using droplet probe [J]. CIESC Journal, 2022, 73(3): 1119-1126. |
[6] | Xiaodong XU, Chenbo MA, Jianjun SUN, Yuyan ZHANG, Qiuping YU. Influence and optimization of groove structure parameters on vaporization characteristics of liquid film mechanical seals based on optimal mass transfer coefficient [J]. CIESC Journal, 2022, 73(3): 1147-1156. |
[7] | Yingjie YANG, He YANG, Jialong ZHU, Shuangqi GUO, Yan SHANG, Yang LI, Lijun JIN, Haoquan HU. Interaction between functional groups during slow pyrolysis of Naomaohu coal [J]. CIESC Journal, 2022, 73(2): 865-875. |
[8] | Meng MA, Yonghui BAI, Juntao WEI, Lunjing YAN, Peng LYU, Jiaofei WANG, Xudong SONG, Weiguang SU, Guangsuo YU. Research and progress of volatile-char interaction during biomass and coal (co-)pyrolysis/gasification process [J]. CIESC Journal, 2022, 73(11): 5186-5200. |
[9] | Haifeng LU, Jiakun CAO, Xiaolei GUO, Haifeng LIU. Study on fine powders discharged from hopper based on interparticle interactions analysis [J]. CIESC Journal, 2021, 72(8): 4047-4054. |
[10] | WEI Xiaolan, XIE Pei, WANG Weilong, LU Jianfeng, DING Jing. Calculation of phase diagram and thermal stability of molten salt for ternary chloride systems containing calcium [J]. CIESC Journal, 2021, 72(6): 3074-3083. |
[11] | LI Bingfan, LIU Gang, CHEN Lei. Study on the influence mechanism of CH4 dissolution on the intermolecular interaction between crude oil molecules based on molecular dynamics simulation [J]. CIESC Journal, 2021, 72(3): 1253-1263. |
[12] | Hongyan WEN, Yuming ZHANG, Dexin JI, Guangyi ZHANG. Co-combustion of oil sludge char and brown coal: characteristics and kinetics [J]. CIESC Journal, 2020, 71(2): 755-765. |
[13] | Xiugang WANG, Yufan WU, Luyang GUO, Qinghua LU, Xiaofeng YE, Yucai CAO. Experimental study and CFD simulation of heat transfer in polymerization reactor [J]. CIESC Journal, 2020, 71(2): 584-593. |
[14] | Cheng FANG, Sheng YANG, Yun WU, Hongwei ZHANG, Jie WANG, Lutian WANG, Songze HAO. Effect of floc surface morphology on membrane pollution prediction [J]. CIESC Journal, 2020, 71(2): 715-723. |
[15] | Chunxi LI. Recent advances in thermodynamic modelling of ionic liquid solutions [J]. CIESC Journal, 2020, 71(1): 81-91. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||