CIESC Journal ›› 2022, Vol. 73 ›› Issue (3): 1008-1021.DOI: 10.11949/0438-1157.20211411
• Reviews and monographs • Previous Articles Next Articles
Zhonghua WANG1(),Songsheng ZHENG1(),Yudong YAO2,Riyi CHEN1,Zhaolin WANG1
Received:
2021-10-08
Revised:
2022-01-06
Online:
2022-03-14
Published:
2022-03-15
Contact:
Songsheng ZHENG
通讯作者:
郑淞生
作者简介:
王中华(1997—),男,硕士研究生,基金资助:
CLC Number:
Zhonghua WANG, Songsheng ZHENG, Yudong YAO, Riyi CHEN, Zhaolin WANG. Research progress on electrocatalytic decomposition of ammonia for hydrogen production[J]. CIESC Journal, 2022, 73(3): 1008-1021.
王中华, 郑淞生, 姚育栋, 陈日懿, 王兆林. 电催化分解氨制氢研究进展[J]. 化工学报, 2022, 73(3): 1008-1021.
Add to citation manager EndNote|Ris|BibTeX
1 | Wu G, Zeng M, Peng L L, et al. China’s new energy development: status, constraints and reforms[J]. Renewable and Sustainable Energy Reviews, 2016, 53: 885-896. |
2 | Abe J O, Popoola A P I, Ajenifuja E, et al. Hydrogen energy, economy and storage: review and recommendation[J]. International Journal of Hydrogen Energy, 2019, 44(29): 15072-15086. |
3 | Ren X S, Dong L C, Xu D, et al. Challenges towards hydrogen economy in China[J]. International Journal of Hydrogen Energy, 2020, 45(59): 34326-34345. |
4 | Noussan M, Raimondi P P, Scita R, et al. The role of green and blue hydrogen in the energy transition—a technological and geopolitical perspective[J]. Sustainability, 2020, 13(1): 298. |
5 | Dawood F, Anda M, Shafiullah G M. Hydrogen production for energy: an overview[J]. International Journal of Hydrogen Energy, 2020, 45(7): 3847-3869. |
6 | Zheng J Y, Liu X X, Xu P, et al. Development of high pressure gaseous hydrogen storage technologies[J]. International Journal of Hydrogen Energy, 2012, 37(1): 1048-1057. |
7 | Sharma S, Ghoshal S K. Hydrogen the future transportation fuel: from production to applications[J]. Renewable and Sustainable Energy Reviews, 2015, 43: 1151-1158. |
8 | Moradi R, Groth K M. Hydrogen storage and delivery: review of the state of the art technologies and risk and reliability analysis[J]. International Journal of Hydrogen Energy, 2019, 44(23): 12254-12269. |
9 | Valdés-López V F, Mason T, Shearing P R, et al. Carbon monoxide poisoning and mitigation strategies for polymer electrolyte membrane fuel cells—a review[J]. Progress in Energy and Combustion Science, 2020, 79: 100842. |
10 | Nachiappan N, Kalaignan G P, Sasikumar G. Influence of methanol impurity in hydrogen on PEMFC performance[J]. Ionics, 2013, 19(3): 517-522. |
11 | Li Y, Wang H H, Priest C, et al. Advanced electrocatalysis for energy and environmental sustainability via water and nitrogen reactions[J]. Advanced Materials, 2021, 33(6): 2000381. |
12 | Zhu B J, Liang Z B, Zou R Q. Designing advanced catalysts for energy conversion based on urea oxidation reaction[J]. Small, 2020, 16(7): 1906133. |
13 | Hu S N, Tan Y, Feng C Q, et al. Synthesis of N doped NiZnCu-layered double hydroxides with reduced graphene oxide on nickel foam as versatile electrocatalysts for hydrogen production in hybrid-water electrolysis[J]. Journal of Power Sources, 2020, 453: 227872. |
14 | Andersson J, Grönkvist S. Large-scale storage of hydrogen[J]. International Journal of Hydrogen Energy, 2019, 44(23): 11901-11919. |
15 |
Cheddie D. Ammonia as a hydrogen source for fuel cells: a review[J]. Hydrogen Energy—Challenges and Perspectives, 2012, DOI: 10.5772/47759 .
DOI |
16 | Klerke A, Christensen C H, Nørskov J K, et al. Ammonia for hydrogen storage: challenges and opportunities[J]. Journal of Materials Chemistry, 2008, 18(20): 2304. |
17 | Bicer Y, Dincer I, Zamfirescu C, et al. Comparative life cycle assessment of various ammonia production methods[J]. Journal of Cleaner Production, 2016, 135: 1379-1395. |
18 | Giddey S, Badwal S P S, Munnings C, et al. Ammonia as a renewable energy transportation media[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(11): 10231-10239. |
19 | Smith C, Hill A K, Torrente-Murciano L. Current and future role of Haber-Bosch ammonia in a carbon-free energy landscape[J]. Energy & Environmental Science, 2020, 13(2): 331-344. |
20 | Zhou B, Zhang N N, Wu Y J, et al. An option for green and sustainable future: electrochemical conversion of ammonia into nitrogen[J]. Journal of Energy Chemistry, 2021, 60: 384-402. |
21 | 姚育栋, 王中华, 林志彬, 等. Pt-Ir共沉积电位对电解氨水制氢的性能影响[J]. 化工学报, 2020, 71(8): 3780-3788. |
Yao Y D, Wang Z H, Lin Z B, et al. Influences of Pt-Ir electro-codeposition potentials on hydrogen production with ammonia electrolysis[J]. CIESC Journal, 2020, 71(8): 3780-3788. | |
22 | Grigoriev S A, Fateev V N, Bessarabov D G, et al. Current status, research trends, and challenges in water electrolysis science and technology[J]. International Journal of Hydrogen Energy, 2020, 45(49): 26036-26058. |
23 | You B, Tang M T, Tsai C, et al. Enhancing electrocatalytic water splitting by strain engineering[J]. Advanced Materials, 2019, 31(17): 1807001. |
24 | Brauns J, Turek T. Alkaline water electrolysis powered by renewable energy: a review[J]. Processes, 2020, 8(2): 248. |
25 | Chi J, Yu H M. Water electrolysis based on renewable energy for hydrogen production[J]. Chinese Journal of Catalysis, 2018, 39(3): 390-394. |
26 | Sapountzi F M, Gracia J M, Weststrate C J J, et al. Electrocatalysts for the generation of hydrogen, oxygen and synthesis gas[J]. Progress in Energy and Combustion Science, 2017, 58: 1-35. |
27 | Zeng K, Zhang D K. Recent progress in alkaline water electrolysis for hydrogen production and applications[J]. Progress in Energy and Combustion Science, 2010, 36(3): 307-326. |
28 | Dou B L, Zhang H, Song Y C, et al. Hydrogen production from the thermochemical conversion of biomass: issues and challenges[J]. Sustainable Energy & Fuels, 2019, 3(2): 314-342. |
29 | Kuckshinrichs W, Ketelaer T, Koj J C. Economic analysis of improved alkaline water electrolysis[J]. Frontiers in Energy Research, 2017, 5: 151. |
30 | Matute G, Yusta J M, Correas L C. Techno-economic modelling of water electrolysers in the range of several MW to provide grid services while generating hydrogen for different applications: a case study in Spain applied to mobility with FCEVs[J]. International Journal of Hydrogen Energy, 2019, 44(33): 17431-17442. |
31 | Yukesh Kannah R, Kavitha S, Preethi, et al. Techno-economic assessment of various hydrogen production methods—a review[J]. Bioresource Technology, 2021, 319: 124175. |
32 | Gu Y Q, Chen X Y, Zhao S, et al. FeCe nanocomposite with high iron content as efficient catalyst for generation of CO x -free hydrogen via ammonia decomposition[J]. Journal of Rare Earths, 2020, 38(10): 1053-1059. |
33 | Gu Y Q, Ma Y L, Long Z Y, et al. One-pot synthesis of supported Ni@Al2O3 catalysts with uniform small-sized Ni for hydrogen generation via ammonia decomposition[J]. International Journal of Hydrogen Energy, 2021, 46(5): 4045-4054. |
34 | Kocer T, Oztuna F E S, Kurtoğlu S F, et al. Graphene aerogel-supported ruthenium nanoparticles for CO x -free hydrogen production from ammonia[J]. Applied Catalysis A: General, 2021, 610: 117969. |
35 | Akiyama M, Aihara K, Sawaguchi T, et al. Ammonia decomposition to clean hydrogen using non-thermal atmospheric-pressure plasma[J]. International Journal of Hydrogen Energy, 2018, 43(31): 14493-14497. |
36 | Hayakawa Y, Miura T, Shizuya K, et al. Hydrogen production system combined with a catalytic reactor and a plasma membrane reactor from ammonia[J]. International Journal of Hydrogen Energy, 2019, 44(20): 9987-9993. |
37 | Chang F, Gao W B, Guo J P, et al. Emerging materials and methods toward ammonia-based energy storage and conversion[J]. Advanced Materials, 2021: 2005721. |
38 | Adli N M, Zhang H, Mukherjee S, et al. Review—ammonia oxidation electrocatalysis for hydrogen generation and fuel cells[J]. Journal of the Electrochemical Society, 2018, 165(15): J3130-J3147. |
39 | Bell T E, Torrente-Murciano L. H2 production via ammonia decomposition using non-noble metal catalysts: a review[J]. Topics in Catalysis, 2016, 59(15/16): 1438-1457. |
40 | Lamb K E, Dolan M D, Kennedy D F. Ammonia for hydrogen storage: a review of catalytic ammonia decomposition and hydrogen separation and purification[J]. International Journal of Hydrogen Energy, 2019, 44(7): 3580-3593. |
41 | Juangsa F B, Darmanto P S, Aziz M. CO2-free power generation employing integrated ammonia decomposition and hydrogen combustion-based combined cycle[J]. Thermal Science and Engineering Progress, 2020, 19: 100672. |
42 | Kapałka A, Cally A, Neodo S, et al. Electrochemical behavior of ammonia at Ni/Ni(OH)2 electrode[J]. Electrochemistry Communications, 2010, 12(1): 18-21. |
43 | Almomani F, Ali H Salah Saad M. Electrochemical oxidation of ammonia (NH4 +/NH3) on synthesized nickel-cobalt oxide catalyst[J]. International Journal of Hydrogen Energy, 2021, 46(6): 4678-4690. |
44 | Oswin H G, Salomon M. The anodic oxidation of ammonia at platinum black electrodes in aqueous Koh electrolyte[J]. Canadian Journal of Chemistry, 1963, 41(7): 1686-1694. |
45 | Gerischer H, Mauerer A. Untersuchungen zur anodischen oxidation von ammoniak an platin-elektroden[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1970, 25(3): 421-433. |
46 | Gootzen J F E, Wonders A H, Visscher W, et al. A DEMS and cyclic voltammetry study of NH3 oxidation on platinized platinum[J]. Electrochimica Acta, 1998, 43(12/13): 1851-1861. |
47 | Vidal-Iglesias F J, Solla-Gullón J, Pérez J M, et al. Evidence by SERS of azide anion participation in ammonia electrooxidation in alkaline medium on nanostructured Pt electrodes[J]. Electrochemistry Communications, 2006, 8(1): 102-106. |
48 | Matsui T, Suzuki S, Katayama Y, et al. In situ attenuated total reflection infrared spectroscopy on electrochemical ammonia oxidation over Pt electrode in alkaline aqueous solutions[J]. Langmuir, 2015, 31(42): 11717-11723. |
49 | Endo K, Katayama Y, Miura T. A rotating disk electrode study on the ammonia oxidation[J]. Electrochimica Acta, 2005, 50(11): 2181-2185. |
50 | Peng W, Xiao L, Huang B, et al. Inhibition effect of surface oxygenated species on ammonia oxidation reaction[J]. The Journal of Physical Chemistry C, 2011, 115(46): 23050-23056. |
51 | Silva J C M, Piasentin R M, Spinacé E V, et al. The effect of antimony-tin and indium-tin oxide supports on the catalytic activity of Pt nanoparticles for ammonia electro-oxidation[J]. Materials Chemistry and Physics, 2016, 180: 97-103. |
52 | Nagita K, Yuhara Y, Fujii K, et al. Ni- and Cu-co-intercalated layered manganese oxide for highly efficient electro-oxidation of ammonia selective to nitrogen[J]. ACS Applied Materials & Interfaces, 2021, 13(24): 28098-28107. |
53 | Vidal-Iglesias F J, Solla-Gullón J, Feliu J M, et al. DEMS study of ammonia oxidation on platinum basal planes[J]. Journal of Electroanalytical Chemistry, 2006, 588(2): 331-338. |
54 | Okanishi T, Katayama Y, Muroyama H, et al. SnO2-modified Pt electrocatalysts for ammonia-fueled anion exchange membrane fuel cells[J]. Electrochimica Acta, 2015, 173: 364-369. |
55 | Vidal-Iglesias F J, Solla-Gullón J, Montiel V, et al. Ammonia selective oxidation on Pt(100) sites in an alkaline medium[J]. The Journal of Physical Chemistry. B, 2005, 109(26): 12914-12919. |
56 | Daramola D A, Botte G G. Theoretical study of ammonia oxidation on platinum clusters—adsorption of ammonia and water fragments[J]. Computational and Theoretical Chemistry, 2012, 989: 7-17. |
57 | Rosca V, Koper M T M. Electrocatalytic oxidation of ammonia on Pt(111) and Pt(100) surfaces[J]. Physical Chemistry Chemical Physics, 2006, 8(21): 2513. |
58 | Hanada N, Hino S, Ichikawa T, et al. Hydrogen generation by electrolysis of liquid ammonia[J]. Chemical Communications, 2010, 46(41): 7775. |
59 | Goshome K, Yamada T, Miyaoka H, et al. High compressed hydrogen production via direct electrolysis of liquid ammonia[J]. International Journal of Hydrogen Energy, 2016, 41(33): 14529-14534. |
60 | Dong B X, Ichikawa T, Hanada N, et al. Liquid ammonia electrolysis by platinum electrodes[J]. Journal of Alloys and Compounds, 2011, 509: S891-S894. |
61 | de Vooys A C A, Koper M T M, van Santen R A, et al. The role of adsorbates in the electrochemical oxidation of ammonia on noble and transition metal electrodes[J]. Journal of Electroanalytical Chemistry, 2001, 506(2): 127-137. |
62 | Endo K, Nakamura K, Katayama Y, et al. Pt-Me (Me = Ir, Ru, Ni) binary alloys as an ammonia oxidation anode[J]. Electrochimica Acta, 2004, 49(15): 2503-2509. |
63 | Skachkov D, Venkateswara Rao C, Ishikawa Y. Combined first-principles molecular dynamics/density functional theory study of ammonia electrooxidation on Pt(100) electrode[J]. The Journal of Physical Chemistry C, 2013, 117(48): 25451-25466. |
64 | Herron J A, Ferrin P, Mavrikakis M. Electrocatalytic oxidation of ammonia on transition-metal surfaces: a first-principles study[J]. The Journal of Physical Chemistry C, 2015, 119(26): 14692-14701. |
65 | Estejab A, Botte G G. DFT calculations of ammonia oxidation reactions on bimetallic clusters of platinum and iridium[J]. Computational and Theoretical Chemistry, 2016, 1091: 31-40. |
66 | Vidal-Iglesias F J, Garcı́a-Aráez N, Montiel V, et al. Selective electrocatalysis of ammonia oxidation on Pt(1 0 0) sites in alkaline medium[J]. Electrochemistry Communications, 2003, 5(1): 22-26. |
67 | Katsounaros I, Figueiredo M C, Calle-Vallejo F, et al. On the mechanism of the electrochemical conversion of ammonia to dinitrogen on Pt(100) in alkaline environment[J]. Journal of Catalysis, 2018, 359: 82-91. |
68 | Zhang Y M, Xiao X Z, Cao Y L, et al. NH3/Ir(100): electronic structure and dehydrogenation[J]. International Journal of Hydrogen Energy, 2013, 38(7): 2965-2972. |
69 | Boggs B K, Botte G G. Optimization of Pt-Ir on carbon fiber paper for the electro-oxidation of ammonia in alkaline media[J]. Electrochimica Acta, 2010, 55(19): 5287-5293. |
70 | Vitse F, Cooper M, Botte G G. On the use of ammonia electrolysis for hydrogen production[J]. Journal of Power Sources, 2005, 142(1/2): 18-26. |
71 | Bonnin E P, Biddinger E J, Botte G G. Effect of catalyst on electrolysis of ammonia effluents[J]. Journal of Power Sources, 2008, 182(1): 284-290. |
72 | Lomocso T L, Baranova E A. Electrochemical oxidation of ammonia on carbon-supported bi-metallic PtM (M = Ir, Pd, SnO x ) nanoparticles[J]. Electrochimica Acta, 2011, 56(24): 8551-8558. |
73 | Yao K, Cheng Y F. Investigation of the electrocatalytic activity of nickel for ammonia oxidation[J]. Materials Chemistry and Physics, 2008, 108(2/3): 247-250. |
74 | Hanada N, Kohase Y, Hori K, et al. Electrolysis of ammonia in aqueous solution by platinum nanoparticles supported on carbon nanotube film electrode[J]. Electrochimica Acta, 2020, 341: 136027. |
75 | Jiang J H. Promotion of PtIr and Pt catalytic activity towards ammonia electrooxidation through the modification of Zn[J]. Electrochemistry Communications, 2017, 75: 52-55. |
76 | Le Vot S, Roué L, Bélanger D. Synthesis of Pt-Ir catalysts by coelectrodeposition: application to ammonia electrooxidation in alkaline media[J]. Journal of Power Sources, 2013, 223: 221-231. |
77 | Sun H Y, Xu G R, Li F M, et al. Hydrogen generation from ammonia electrolysis on bifunctional platinum nanocubes electrocatalysts[J]. Journal of Energy Chemistry, 2020, 47: 234-240. |
78 | Li S Y, Chen H Y, Liu J, et al. Size- and density-controllable fabrication of the platinum nanoparticle/ITO electrode by pulse potential electrodeposition for ammonia oxidation[J]. ACS Applied Materials & Interfaces, 2017, 9(33): 27765-27772. |
79 | Kang Y M, Wang W, Li J M, et al. A highly efficient Pt-NiO/C electrocatalyst for ammonia electro-oxidation[J]. Journal of the Electrochemical Society, 2017, 164(9): F958-F965. |
80 | Liu J, Chen B, Kou Y, et al. Pt-Decorated highly porous flower-like Ni particles with high mass activity for ammonia electro-oxidation[J]. Journal of Materials Chemistry A, 2016, 4(28): 11060-11068. |
81 | Zhou Y F, Zhang G Q, Gong Z, et al. Potentiodynamic uniform anchoring of platinum nanoparticles on N-doped graphene with improved mass activity for the electrooxidation of ammonia[J]. ChemElectroChem, 2016, 3(4): 605-614. |
82 | Song L, Liang Z X, Ma Z, et al. Temperature-dependent kinetics and reaction mechanism of ammonia oxidation on pt, ir, and PtIr alloy catalysts[J]. Journal of the Electrochemical Society, 2018, 165(15): J3095-J3100. |
83 | Allagui A, Sarfraz S, Baranova E A. Ni x Pd1- x (x = 0.98, 0.93, and 0.58) nanostructured catalysts for ammonia electrooxidation in alkaline media[J]. Electrochimica Acta, 2013, 110: 253-259. |
84 | Allagui A, Sarfraz S, Ntais S, et al. Electrochemical behavior of ammonia on Ni98Pd2 nano-structured catalyst[J]. International Journal of Hydrogen Energy, 2014, 39(1): 41-48. |
85 | Xu W, Du D W, Lan R, et al. Electrodeposited NiCu bimetal on carbon paper as stable non-noble anode for efficient electrooxidation of ammonia[J]. Applied Catalysis B: Environmental, 2018, 237: 1101-1109. |
86 | Shih Y J, Huang Y H, Huang C P. Electrocatalytic ammonia oxidation over a nickel foam electrode: role of Ni(OH)2(s)-NiOOH(s) nanocatalysts[J]. Electrochimica Acta, 2018, 263: 261-271. |
87 | Zhu M K, Yang Y, Xi S B, et al. Deciphering NH3 adsorption kinetics in ternary Ni-Cu-Fe oxyhydroxide toward efficient ammonia oxidation reaction[J]. Small, 2021, 17(7): 2005616. |
88 | Zhang H M, Wang Y F, Wu Z C, et al. An ammonia electrolytic cell with NiCu/C as anode catalyst for hydrogen production[J]. Energy Procedia, 2017, 142: 1539-1544. |
89 | Gwak J, Choun M, Lee J. Alkaline ammonia electrolysis on electrodeposited platinum for controllable hydrogen production[J]. ChemSusChem, 2016, 9(4): 403-408. |
90 | Wang X, Kong Q M, Han Y P, et al. Construction of Ir-Co/C nanocomposites and their application in ammonia oxidation reaction[J]. Journal of Electroanalytical Chemistry, 2019, 838: 101-106. |
91 | Li Y, Li X, Pillai H S, et al. Ternary PtIrNi catalysts for efficient electrochemical ammonia oxidation[J]. ACS Catalysis, 2020, 10(7): 3945-3957. |
92 | Zhang J, Lu S F, Xiang Y, et al. Intrinsic effect of carbon supports on the activity and stability of precious metal based catalysts for electrocatalytic alcohol oxidation in fuel cells: a review[J]. ChemSusChem, 2020, 13(10): 2484-2502. |
93 | Zhou Y F, Zhang G Q, Yu M C, et al. High mass and specific activity for ammonia electro-oxidation through optimization of dispersion degree and particle size of Pt-Ir nanoparticles over N-doped reductive graphene oxide[J]. ChemistrySelect, 2018, 3(12): 3433-3443. |
94 | Zhou Y F, Zhang G Q, Yu M C, et al. Free-standing 3D porous N-doped graphene aerogel supported platinum nanocluster for efficient hydrogen production from ammonia electrolysis[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(7): 8437-8446. |
95 | Zöllig H, Fritzsche C, Morgenroth E, et al. Direct electrochemical oxidation of ammonia on graphite as a treatment option for stored source-separated urine[J]. Water Research, 2015, 69: 284-294. |
96 | Boggs B K, Botte G G. On-board hydrogen storage and production: an application of ammonia electrolysis[J]. Journal of Power Sources, 2009, 192(2): 573-581. |
97 | Ji X, Banks C E, Compton R G. The electrochemical oxidation of ammonia at boron-doped diamond electrodes exhibits analytically useful signals in aqueous solutions[J]. The Analyst, 2005, 130(10): 1345-1347. |
98 | de Mishima B A L, Lescano D, Holgado T M, et al. Electrochemical oxidation of ammonia in alkaline solutions: its application to an amperometric sensor[J]. Electrochimica Acta, 1998, 43(3/4): 395-404. |
99 | Assumpção M H M T, da Silva S G, de Souza R F B, et al. Direct ammonia fuel cell performance using PtIr/C as anode electrocatalysts[J]. International Journal of Hydrogen Energy, 2014, 39(10): 5148-5152. |
100 | Rees N V, Compton R G. Carbon-free energy: a review of ammonia-and hydrazine-based electrochemical fuel cells[J]. Energy & Environmental Science, 2011, 4(4): 1255. |
[1] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[2] | Lei WU, Jiao LIU, Changcong LI, Jun ZHOU, Gan YE, Tiantian LIU, Ruiyu ZHU, Qiuli ZHANG, Yonghui SONG. Catalytic microwave pyrolysis of low-rank pulverized coal for preparation of high value-added modified bluecoke powders containing carbon nanotubes [J]. CIESC Journal, 2023, 74(9): 3956-3967. |
[3] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[4] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[5] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[6] | Rubin ZENG, Zhongjie SHEN, Qinfeng LIANG, Jianliang XU, Zhenghua DAI, Haifeng LIU. Study of the sintering mechanism of Fe2O3 nanoparticles based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3353-3365. |
[7] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[8] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[9] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[10] | Linqi YAN, Zhenlei WANG. Multi-step predictive soft sensor modeling based on STA-BiLSTM-LightGBM combined model [J]. CIESC Journal, 2023, 74(8): 3407-3418. |
[11] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
[12] | Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review [J]. CIESC Journal, 2023, 74(7): 2735-2752. |
[13] | Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance [J]. CIESC Journal, 2023, 74(7): 2908-2918. |
[14] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[15] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||