CIESC Journal ›› 2022, Vol. 73 ›› Issue (10): 4762-4768.DOI: 10.11949/0438-1157.20220725
• Process safety • Previous Articles Next Articles
Tianshui LIANG(), Xinke WANG, Dezhi LIU, Wei ZHONG()
Received:
2022-05-19
Revised:
2022-07-22
Online:
2022-11-02
Published:
2022-10-05
Contact:
Wei ZHONG
通讯作者:
钟委
作者简介:
梁天水(1981—),男,博士,教授,liangtsh@zzu.edu.cn
基金资助:
CLC Number:
Tianshui LIANG, Xinke WANG, Dezhi LIU, Wei ZHONG. Experimental and theoretical study on the pyrolysis mechanism of (C2F5)3N[J]. CIESC Journal, 2022, 73(10): 4762-4768.
梁天水, 王新科, 刘德智, 钟委. 全氟三乙胺热解机理的实验与理论研究[J]. 化工学报, 2022, 73(10): 4762-4768.
Add to citation manager EndNote|Ris|BibTeX
实验条件 | 参数设置 |
---|---|
毛细柱固定相 | 10%SE-54 |
毛细柱柱长 | 30 m |
毛细柱内径 | 0.25 mm |
进样口温度 | 280℃ |
检测器温度 | 240℃ |
柱箱升温曲线 | 50~150℃, 10℃/min |
分流比 | 80∶1 |
载气类型 | 氦气 |
载气流速 | 1.2 ml/min |
离子源温度 | 240℃ |
Table 1 GC-MS detection conditions
实验条件 | 参数设置 |
---|---|
毛细柱固定相 | 10%SE-54 |
毛细柱柱长 | 30 m |
毛细柱内径 | 0.25 mm |
进样口温度 | 280℃ |
检测器温度 | 240℃ |
柱箱升温曲线 | 50~150℃, 10℃/min |
分流比 | 80∶1 |
载气类型 | 氦气 |
载气流速 | 1.2 ml/min |
离子源温度 | 240℃ |
序号 | 质荷比(m/z) | 气体产物 |
---|---|---|
1 | CF+(31);C2F+(43);CF2+(50);CF3+(69);C2F5+(119) | C2F6 |
2 | CF+(31);C2F+(43);CF2+(50);C2F2+(62);CF3+(69);C2F3+(81);C3F3+(93);C2F4+(100);C3F4+(112);C2F5+(119);C3F5+(131);C3F6+(150) | C3F8 |
3 | CF+(31);CF2+(50);CF3+(69);C2F4+(100);C2F4N+(114);C2F5N+(133);C3F6N+(164);C3F7N+(183) | C3F7N |
4 | CF+(31);CF2+(50);CF3+(69);C2F4+(100);C2F4N+(114);C2F5+(119);C3F6N+(164);C4F8N+(214) | C4F9N |
Table 2 Distribution of ion peaks of (C2F5)3N pyrolysis products
序号 | 质荷比(m/z) | 气体产物 |
---|---|---|
1 | CF+(31);C2F+(43);CF2+(50);CF3+(69);C2F5+(119) | C2F6 |
2 | CF+(31);C2F+(43);CF2+(50);C2F2+(62);CF3+(69);C2F3+(81);C3F3+(93);C2F4+(100);C3F4+(112);C2F5+(119);C3F5+(131);C3F6+(150) | C3F8 |
3 | CF+(31);CF2+(50);CF3+(69);C2F4+(100);C2F4N+(114);C2F5N+(133);C3F6N+(164);C3F7N+(183) | C3F7N |
4 | CF+(31);CF2+(50);CF3+(69);C2F4+(100);C2F4N+(114);C2F5+(119);C3F6N+(164);C4F8N+(214) | C4F9N |
物种 | ΔE/(kcal/mol) | (ΔE+ΔEZPVE)/(kcal/mol) |
---|---|---|
全氟三乙胺:N(C2F5)3 | 0 | 0 |
P1:CF3—CF N—C2F5+C2F6 | -11.63 | -13.28 |
P2:CF3—CF N—C2F5+C2F6 | -7.85 | -9.52 |
P3:N(C2F5)2CF2+CF3 | 75.73 | 72.56 |
P4:N(C2F5)2+C2F5 | 68.60 | 65.06 |
TS1 | 76.56 | 73.86 |
TS2 | 79.00 | 76.27 |
Table 3 Energy of all substances relative to the reactants in the pyrolysis reaction of (C2F5)3N
物种 | ΔE/(kcal/mol) | (ΔE+ΔEZPVE)/(kcal/mol) |
---|---|---|
全氟三乙胺:N(C2F5)3 | 0 | 0 |
P1:CF3—CF N—C2F5+C2F6 | -11.63 | -13.28 |
P2:CF3—CF N—C2F5+C2F6 | -7.85 | -9.52 |
P3:N(C2F5)2CF2+CF3 | 75.73 | 72.56 |
P4:N(C2F5)2+C2F5 | 68.60 | 65.06 |
TS1 | 76.56 | 73.86 |
TS2 | 79.00 | 76.27 |
5 | Zhang M L, Lin Z J. Ab initio studies of the thermal decomposition pathways of 1-bromo-3, 3, 3-trifluoropropene[J]. Journal of Molecular Structure: Theochem, 2009, 899(1/2/3): 98-110. |
6 | Takahashi F, Katta V R, Linteris G T, et al. A computational study of extinguishment and enhancement of propane cup-burner flames by halon and alternative agents[J]. Fire Safety Journal, 2017, 91: 688-694. |
7 | Takahashi F, Katta V R, Linteris G T, et al. Combustion inhibition and enhancement of cup-burner flames by CF3Br, C2HF5, C2HF3Cl2, and C3H2F3Br[J]. Proceedings of the Combustion Institute, 2015, 35(3): 2741-2748. |
8 | Linteris G T, Takahashi F, Katta V R. Cup-burner flame extinguishment by CF3Br and Br2 [J]. Combustion and Flame, 2007, 149(1/2): 91-103. |
9 | 余彬彬, 蒋新生, 禹进, 等. 全氟己酮抑制航空煤油燃烧实验及化学动力学研究[J]. 化工学报, 2022, 73(4): 1834-1844. |
Yu B B, Jiang X S, Yu J, et al. Experimental and chemical dynamics study on the inhibition of combustion of aviation kerosene by C6F12O[J]. CIESC Journal, 2022, 73(4): 1834-1844. | |
10 | Tapscott R E, Sheinson R S, Babushok V I, et al. Alternative fire suppressant chemicals [R]. National Institute of Standards and Technology, 2001. |
11 | Heinonen E W, Lifke J L, Tapscott R E. Advanced streaming agent development(volume Ⅳ): Tropodegradable halocarbons[R]. New Mexico Engineering Research Inst Albuquerque, 1996. |
12 | 梁天水, 刘德智, 王永锦, 等. 全氟三乙胺和全氟己酮混合气体的灭火效果研究[J]. 化工学报, 2020, 71(7): 3387-3392. |
Liang T S, Liu D Z, Wang Y J, et al. Study on fire extinguishing efficiency of the mixtures of C6F12O and (C2F5)3N[J]. CIESC Journal, 2020, 71(7): 3387-3392. | |
13 | Sheinson R S, Driscoll D C. Fire suppression mechanisms: agent testing by cup burner[C]//International Conference on CFC and Halon Alternatives. Washington, DC, 1989: 10-11. |
14 | Takahashi K, Sekiuji Y, Yamamori Y, et al. Kinetic studies on the reactions of CF3 with O(3P) and H atoms at high temperatures[J]. The Journal of Physical Chemistry A, 1998, 102(43): 8339-8348. |
15 | Linteris G T, Truett L. Inhibition of premixed methane-air flames by fluoromethanes[J]. Combustion and Flame, 1996, 105(1/2): 15-27. |
16 | Linteris G T, Burgess D R Jr, Babushok V, et al. Inhibition of premixed methane-air flames by fluoroethanes and fluoropropanes[J]. Combustion and Flame, 1998, 113(1/2): 164-180. |
17 | Hynes R G, Mackie J C, Masri A R. Inhibition of premixed hydrogen-air flames by 2-H heptafluoropropane[J]. Combustion and Flame, 1998, 113(4): 554-565. |
18 | Babushok V I, Linteris G T, Meier O C. Combustion properties of halogenated fire suppressants[J]. Combustion and Flame, 2012, 159(12): 3569-3575. |
19 | Takahashi K, Inomata T, Fukaya H, et al. New halon replacements based on perfluoroalkylamines[M]//ACS Symposium Series. Washington, DC: American Chemical Society, 1997: 139-150. |
20 | Takahashi K, Sekiuji Y, Inomata T, et al. Inhibition of combustion by bromine-free polyfluorocarbons(Ⅰ): Burning velocities of methane flames containing polyfluoroalkylamines[J]. Combustion Science and Technology, 1994, 102(1/2/3/4/5/6): 213-230. |
21 | Fukaya H, Ono T, Abe T. New fire suppression mechanism of perfluoroalkylamines[J]. Journal of the Chemical Society, Chemical Communications, 1995(12): 1207. |
22 | Yamamoto T, Yasuhara A, Shiraishi F, et al. Thermal decomposition of halon alternatives[J]. Chemosphere, 1997, 35(3): 643-654. |
23 | Lu D Y, Chao M Y, Zhou X M. Theoretical studies on the reactions of 1, 1, 2, 2, 3, 3, 4-heptafluorocyclopentane with hydroxyl and hydrogen free radicals[J]. Chinese Journal of Chemistry, 2014, 32(9): 897-908. |
24 | 梁天水, 王宗莹, 高坤, 等. 基于cup burner的含铁基添加剂超细水雾灭火有效性分析[J]. 化工学报, 2019, 70(3): 1236-1242. |
Liang T S, Wang Z Y, Gao K, et al. Analysis of fire suppression effectiveness of ultra-fine water mist containing iron compounds additives in cup burner[J]. CIESC Journal, 2019, 70(3): 1236-1242. | |
25 | Scott A P, Radom L. Harmonic vibrational frequencies: an evaluation of Hartree-Fock, Møller–Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors[J]. The Journal of Physical Chemistry, 1996, 100(41): 16502-16513. |
26 | Liu Y, Yang G C, Sun S L, et al. Density functional theory investigation on the second-order nonlinear optical properties of chlorobenzyl-o-carborane derivatives[J]. Chinese Journal of Chemistry, 2012, 30(10): 2349-2355. |
27 | Zhou Y, Liu D J, Fu Y, et al. Accurate prediction of Ir—H bond dissociation enthalpies by density functional theory methods[J]. Chinese Journal of Chemistry, 2014, 32(3): 269-275. |
28 | Bai Q L, Zhang C H, Cheng C H, et al. Synthesis, photophysical properties and near infrared electroluminescence of 1(4), 8(11), 15(18), 22(25)-tetra-(methoxy-phenoxy)phthalocyanine[J]. Chinese Journal of Chemistry, 2012, 30(3): 689-694. |
29 | Gottlieb A D, Weishäupl R M. Strongly separated pairs of core electrons in computed ground states of small molecules[J]. Computational and Theoretical Chemistry, 2013, 1007: 82-89. |
30 | Zhang M H, Li R Z, Yu Y Z. A DFT study on the structure and properties of Cu/Cr2O3 catalyst[J]. Chinese Journal of Chemistry, 2012, 30(4): 771-778. |
31 | Raghavachari K, Trucks G W, Pople J A, et al. Reprint of: a fifth-order perturbation comparison of electron correlation theories[J]. Chemical Physics Letters, 2013, 589: 37-40. |
32 | Gaensslen M, Gross U, Oberhammer H, et al. Perfluorotriethylamine: an amine with unusual structure and reactivity[J]. Angewandte Chemie International Edition in English, 1992, 31(11): 1467-1468. |
33 | Cobos C J, Hintzer K, Sölter L, et al. Shock wave and modelling study of the dissociation pathways of (C2F5)3N[J]. Physical Chemistry Chemical Physics: PCCP, 2019, 21(19): 9785-9792. |
1 | Burkholder J B, Cox R A, Ravishankara A R. Atmospheric degradation of ozone depleting substances, their substitutes, and related species[J]. Chemical Reviews, 2015, 115(10): 3704-3759. |
2 | Molina M J, Rowland F S. Stratospheric sink for chlorofluoromethanes: chlorine atom-catalysed destruction of ozone[J]. Nature, 1974, 249(5460): 810-812. |
3 | Kennedy E M, Li K, Moghtaderi B, et al. A process for disposal of halon 1301 (CBrF3)[J]. Chemical Engineering Communications, 1999, 176(1): 195-200. |
4 | Wan D, Xu J H, Zhang J B, et al. Historical and projected emissions of major halocarbons in China[J]. Atmospheric Environment, 2009, 43(36): 5822-5829. |
[1] | Lei WU, Jiao LIU, Changcong LI, Jun ZHOU, Gan YE, Tiantian LIU, Ruiyu ZHU, Qiuli ZHANG, Yonghui SONG. Catalytic microwave pyrolysis of low-rank pulverized coal for preparation of high value-added modified bluecoke powders containing carbon nanotubes [J]. CIESC Journal, 2023, 74(9): 3956-3967. |
[2] | Linqi YAN, Zhenlei WANG. Multi-step predictive soft sensor modeling based on STA-BiLSTM-LightGBM combined model [J]. CIESC Journal, 2023, 74(8): 3407-3418. |
[3] | Rubin ZENG, Zhongjie SHEN, Qinfeng LIANG, Jianliang XU, Zhenghua DAI, Haifeng LIU. Study of the sintering mechanism of Fe2O3 nanoparticles based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3353-3365. |
[4] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
[5] | Xuejin GAO, Yuzhuo YAO, Huayun HAN, Yongsheng QI. Fault monitoring of fermentation process based on attention dynamic convolutional autoencoder [J]. CIESC Journal, 2023, 74(6): 2503-2521. |
[6] | Zhenghao YANG, Zhen HE, Yulong CHANG, Ziheng JIN, Xia JIANG. Research progress in downer fluidized bed reactor for biomass fast pyrolysis [J]. CIESC Journal, 2023, 74(6): 2249-2263. |
[7] | Simin YI, Yali MA, Weiqiang LIU, Jinshuai ZHANG, Yan YUE, Qiang ZHENG, Songyan JIA, Xue LI. Study on ammonia evaporation and hydration kinetics of microcrystalline magnesite [J]. CIESC Journal, 2023, 74(4): 1578-1586. |
[8] | Jiajing BAO, Hongfei BIE, Ziwei WANG, Rui XIAO, Dong LIU, Shiliang WU. The effects of adding long-chain ethers in n-heptane counterflow diffusion flames on the formation characteristics of soot precursors [J]. CIESC Journal, 2023, 74(4): 1680-1692. |
[9] | Jian JIAN, Jiaming ZHANG, Xiang SHE, Hu ZHOU, Kuiyi YOU, Hean LUO. Correlation with the redox V4+/V5+ ratio in VPO catalysts for oxidation of cyclohexane by NO2 [J]. CIESC Journal, 2023, 74(4): 1570-1577. |
[10] | Zhen LONG, Jinhang WANG, Yong HE, Deqing LIANG. Characteristics study on hydrates formation from gas mixture under ionic liquid together with kinetic hydrate inhibitors [J]. CIESC Journal, 2023, 74(4): 1703-1711. |
[11] | Xinyuan WU, Qilei LIU, Boyuan CAO, Lei ZHANG, Jian DU. Group2vec: group vector representation and its property prediction applications based on unsupervised machine learning [J]. CIESC Journal, 2023, 74(3): 1187-1194. |
[12] | Jin YU, Binbin YU, Xinsheng JIANG. Study on quantification methodology and analysis of chemical effects of combustion control based on fictitious species [J]. CIESC Journal, 2023, 74(3): 1303-1312. |
[13] | Yin XU, Jie CAI, Lu CHEN, Yu PENG, Fuzhen LIU, Hui ZHANG. Advances in heterogeneous visible light photocatalysis coupled with persulfate activation for water pollution control [J]. CIESC Journal, 2023, 74(3): 995-1009. |
[14] | Ruizhe CHEN, Leilei CHENG, Jing GU, Haoran YUAN, Yong CHEN. Research progress in chemical recovery technology of fiber-reinforced polymer composites [J]. CIESC Journal, 2023, 74(3): 981-994. |
[15] | Na ZHANG, Helin PAN, Bo NIU, Yayun ZHANG, Donghui LONG. Density functional theory study on thermal cracking reaction mechanism of phenolic resin [J]. CIESC Journal, 2023, 74(2): 843-860. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||