CIESC Journal ›› 2022, Vol. 73 ›› Issue (12): 5672-5684.DOI: 10.11949/0438-1157.20221224
• Process safety • Previous Articles
Bei PEI1(), Yaxiang KANG1, Minggao YU2(), Jiaqi GUO1, Shuangming WEI1, Liwei CHEN1
Received:
2022-09-07
Revised:
2022-10-31
Online:
2023-01-17
Published:
2022-12-05
Contact:
Minggao YU
裴蓓1(), 康亚祥1, 余明高2(), 郭佳琪1, 韦双明1, 陈立伟1
通讯作者:
余明高
作者简介:
裴蓓(1982—),女,博士,副教授,smart128@126.com
基金资助:
CLC Number:
Bei PEI, Yaxiang KANG, Minggao YU, Jiaqi GUO, Shuangming WEI, Liwei CHEN. Effect of ignition delay time on explosion suppression characteristics of CO2-ultra-fine water mist[J]. CIESC Journal, 2022, 73(12): 5672-5684.
裴蓓, 康亚祥, 余明高, 郭佳琪, 韦双明, 陈立伟. 点火延迟时间对CO2-超细水雾的抑爆特性影响[J]. 化工学报, 2022, 73(12): 5672-5684.
Add to citation manager EndNote|Ris|BibTeX
煤样 | 水分/% (质量) | 灰分/% (质量) | 挥发分/% (质量) | 固定碳/% (质量) |
---|---|---|---|---|
褐煤 | 4.15 | 11.75 | 35.02 | 49.08 |
Table 1 Industrial analysis of coal dust
煤样 | 水分/% (质量) | 灰分/% (质量) | 挥发分/% (质量) | 固定碳/% (质量) |
---|---|---|---|---|
褐煤 | 4.15 | 11.75 | 35.02 | 49.08 |
Fig.5 Gas/coal dust explosion pressure curve and pressure rise rate curve under the action of different concentrations of ultra-fine water mist (10%CO2+1500 ms)
Fig.11 Curve of flame average velocity changing with ignition delay time under the action of different concentrations of ultra-fine water mist (6%CO2)
Fig.12 Curve of flame average velocity changing with ignition delay time under the action of different concentrations of ultra-fine water mist (204 g/m3H2O)
1 | 司荣军, 李润之, 苏岱峰. 煤尘云质量浓度对瓦斯爆炸压力影响的试验研究[J]. 安全与环境学报, 2018, 18(5): 1796-1798. |
Si R J, Li R Z, Su D F. Investigation of the influence of the coal dust cloud on the gas explosion pressure[J]. Journal of Safety and Environment, 2018, 18(5): 1796-1798. | |
2 | 裴蓓, 张子阳, 潘荣锟, 等. 不同强度冲击波诱导沉积煤尘爆炸火焰传播特性[J]. 煤炭学报, 2021, 46(2): 498-506. |
Pei B, Zhang Z Y, Pan R K, et al. Flame propagation characteristics of deposited coal dust explosion induced by shock waves of different intensities[J]. Journal of China Coal Society, 2021, 46(2): 498-506. | |
3 | 王博, 苟瑞君, 阚润哲. 煤尘粒径对瓦斯煤尘爆炸的影响研究[J]. 中北大学学报(自然科学版), 2019, 40(1): 79-83, 89. |
Wang B, Gou R J, Kan R Z. Study on the influence of particle size of coal dust on gas and coal dust explosion[J]. Journal of North University of China (Natural Science Edition), 2019, 40(1): 79-83, 89. | |
4 | 裴蓓, 朱知印, 余明高, 等. 瓦斯/煤尘爆炸初期复合火焰加速及灾害强化机制分析[J]. 工程热物理学报, 2021, 42(7): 1879-1886. |
Pei B, Zhu Z Y, Yu M G, et al. Analysis on the acceleration of composite flame and the strengthening mechanism of disaster in the initial stage of gas/coal dust explosion[J]. Journal of Engineering Thermophysics, 2021, 42(7): 1879-1886. | |
5 | 景国勋, 邵泓源, 吴昱楼, 等. 不同煤种对瓦斯煤尘爆炸影响的实验研究[J]. 煤矿安全, 2020, 51(5): 1-5. |
Jing G X, Shao H Y, Wu Y L, et al. Experimental study on the influence of different coal species on gas and coal dust explosion[J]. Safety in Coal Mines, 2020, 51(5): 1-5. | |
6 | Li Y, Xu H L, Wang X S. Experimental study on the influence of initial pressure on explosion of methane-coal dust mixtures[J]. Procedia Engineering, 2013, 62: 980-984. |
7 | Kundu S K, Zanganeh J, Eschebach D, et al. Explosion severity of methane-coal dust hybrid mixtures in a ducted spherical vessel[J]. Powder Technology, 2018, 323: 95-102. |
8 | Garcia-Agreda A, Benedetto A D, Russo P, et al. Dust/gas mixtures explosion regimes[J]. Powder Technology, 2011, 205(1/2/3): 81-86. |
9 | Cao W G, Zhou Z H, Li W J, et al. Under-expansion jet flame propagation characteristics of premixed H2/air in explosion venting[J]. International Journal of Hydrogen Energy, 2021, 46(78): 38913-38922. |
10 | Cao W G, Zhou Z H, Zhou W, et al. The flow field behaviours of under-expansion jet flame in premixed hydrogen/air explosion venting[J]. International Journal of Hydrogen Energy, 2022, 47(18): 10420-10430. |
11 | Cao W G, Qin Q F, Cao W, et al. Experimental and numerical studies on the explosion severities of coal dust/air mixtures in a 20-L spherical vessel[J]. Powder Technology, 2017, 310: 17-23. |
12 | Jiao F Y, Zhang H R, Li W J, et al. Experimental and numerical study of the influence of initial temperature on explosion limits and explosion process of syngas-air mixtures[J]. International Journal of Hydrogen Energy, 2022, 47(52): 22261-22272. |
13 | 王晓彬. 点火延迟时间对甲烷煤尘爆炸特性的影响[J]. 煤矿安全, 2020, 51(3): 23-27. |
Wang X B. Effect of ignition delay time on explosion characteristics of methane and coal dust hybrid mixtures[J]. Safety in Coal Mines, 2020, 51(3): 23-27. | |
14 | 李雨成, 刘天奇, 周西华. 煤尘爆炸最大压力随点火延迟时间的时序性分析[J]. 中国安全科学学报, 2016, 26(5): 30-34. |
Li Y C, Liu T Q, Zhou X H. Time series analysis of maximum pressure of coal dust explosion as a function of ignition delay time[J]. China Safety Science Journal, 2016, 26(5): 30-34. | |
15 | Wang S Y, Shi Z C, Peng X, et al. Effect of the ignition delay time on explosion severity parameters of coal dust/air mixtures[J]. Powder Technology, 2019, 342: 509-516. |
16 | 袁旌杰, 伍毅, 陈瑜, 等. 点火延迟时间对粉尘最大爆炸压力测定影响的研究[J]. 中国安全科学学报, 2010, 20(3): 65-69. |
Yuan J J, Wu Y, Chen Y, et al. Effect of ignition delay time on measurement of maximum explosion pressure of dusts[J]. China Safety Science Journal, 2010, 20(3): 65-69. | |
17 | Song Y F, Zhang Q. Quantitative research on gas explosion inhibition by water mist[J]. Journal of Hazardous Materials, 2019, 363: 16-25. |
18 | Jing Q, Wang D, Liu Q M, et al. Inhibition effect and mechanism of ultra-fine water mist on CH4/air detonation: quantitative research based on CFD technology[J]. Process Safety and Environmental Protection, 2021, 148: 75-92. |
19 | Blanchard E, Boulet P, Fromy P, et al. Experimental and numerical study of the interaction between water mist and fire in an intermediate test tunnel[J]. Fire Technology, 2014, 50(3): 565-587. |
20 | 李振峰, 王天政, 安安, 等. 细水雾抑制煤尘与瓦斯爆炸实验[J]. 西安科技大学学报, 2011, 31(6): 698-702, 707. |
Li Z F, Wang T Z, An A, et al. Experiment on inhibiting the gas and coal dust explosion by water mist[J]. Journal of Xi'an University of Science and Technology, 2011, 31(6): 698-702, 707. | |
21 | Zhang P P, Zhou Y H, Cao X Y, et al. Mitigation of methane/air explosion in a closed vessel by ultrafine water fog[J]. Safety Science, 2014, 62: 1-7. |
22 | Cao X Y, Ren J J, Zhou Y H, et al. Suppression of methane/air explosion by ultrafine water mist containing sodium chloride additive[J]. Journal of Hazardous Materials, 2015, 285: 311-318. |
23 | 陈彪, 冯萧, 张皓天, 等. 超细水雾抑制甲烷-煤尘复合爆炸的实验研究[J]. 消防科学与技术, 2021, 40(7): 1046-1051. |
Chen B, Feng X, Zhang H T, et al. Experimental study on suppression of methane-coal dust compound explosion by ultra-fine water mist[J]. Fire Science and Technology, 2021, 40(7): 1046-1051. | |
24 | 常新明, 张红军, 魏垂胜, 等. 细水雾粒径对管内瓦斯爆炸特性的影响机理研究[J]. 河南理工大学学报(自然科学版), 2021, 40(5): 8-15. |
Chang X M, Zhang H J, Wei C S, et al. Study on the influence mechanism of fine water mist particle size on gas explosion characteristics in pipe[J]. Journal of Henan Polytechnic University (Natural Science), 2021, 40(5): 8-15. | |
25 | 余明高, 安安, 游浩. 细水雾抑制管道瓦斯爆炸的实验研究[J]. 煤炭学报, 2011, 36(3): 417-422. |
Yu M G, An A, You H. Experimental study on inhibiting the gas explosion by water spray in tube[J]. Journal of China Coal Society, 2011, 36(3): 417-422. | |
26 | Wei S M, Yu M G, Pei B, et al. Suppression of CO2 and H2O on the cellular instability of premixed methane/air flame[J]. Fuel, 2020, 264: 116862. |
27 | Pei B, Zhu Z Y, Yang S J, et al. Evaluation of the suppression effect on the flame intensification of ethanol fire by N2 twin-fluid water mist containing KQ compound additive[J]. Process Safety and Environmental Protection, 2021, 149: 289-298. |
28 | Tousif M, Harish A, Kumaran S M, et al. Numerical study of interaction of coal dust with premixed fuel-lean methane-air flames[J]. Advanced Powder Technology, 2020, 31(9): 3833-3844. |
29 | 李海涛, 陈晓坤, 邓军, 等. 湍流状态下竖直管道内甲烷-煤尘预混特征及爆炸过程数值模拟[J]. 煤炭学报, 2018, 43(6): 1769-1779. |
Li H T, Chen X K, Deng J, et al. Numerical simulation on the premix properties and explosion process of methane/coal dust mixture in a vertical pipeline under turbulent flow[J]. Journal of China Coal Society, 2018, 43(6): 1769-1779. | |
30 | 李庆钊, 翟成, 吴海进, 等. 基于20L球形爆炸装置的煤尘爆炸特性研究[J]. 煤炭学报, 2011, 36(S1): 119-124. |
Li Q Z, Zhai C, Wu H J, et al. Investigation on coal dust explosion characteristics using 20 L explosion sphere vessels[J]. Journal of China Coal Society, 2011, 36(S1): 119-124. |
[1] | Baomin DAI, Qilong WANG, Shengchun LIU, Jianing ZHANG, Xinhai LI, Fandi ZONG. Thermodynamic performance analysis of combined cooling and heating system based on combination of CO2 with the zeotropic refrigerant assisted subcooled [J]. CIESC Journal, 2023, 74(S1): 64-73. |
[2] | Tianyang YANG, Huiming ZOU, Hui ZHOU, Chunlei WANG, Changqing TIAN. Experimental investigation on heating performance of vapor-injection CO2 heat pump for electric vehicles at -30℃ [J]. CIESC Journal, 2023, 74(S1): 272-279. |
[3] | Meisi CHEN, Weida CHEN, Xinyao LI, Shangyu LI, Youting WU, Feng ZHANG, Zhibing ZHANG. Advances in silicon-based ionic liquid microparticle enhanced gas capture and conversion [J]. CIESC Journal, 2023, 74(9): 3628-3639. |
[4] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[5] | Guixian LI, Abo CAO, Wenliang MENG, Dongliang WANG, Yong YANG, Huairong ZHOU. Process design and evaluation of CO2 to methanol coupled with SOEC [J]. CIESC Journal, 2023, 74(7): 2999-3009. |
[6] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[7] | Hao WANG, Siyang TANG, Shan ZHONG, Bin LIANG. An investigation of the enhancing effect of solid particle surface on the CO2 desorption behavior in chemical sorption process with MEA solution [J]. CIESC Journal, 2023, 74(4): 1539-1548. |
[8] | Can YANG, Xueqi SUN, Minghua SHANG, Jian ZHANG, Xiangping ZHANG, Shaojuan ZENG. Research status and prospect of CO2 absorption and separation by phase-change ionic liquid systems [J]. CIESC Journal, 2023, 74(4): 1419-1432. |
[9] | Wanyuan HE, Yiyu CHEN, Chunying ZHU, Taotao FU, Xiqun GAO, Youguang MA. Study on gas-liquid mass transfer characteristics in microchannel with array bulges [J]. CIESC Journal, 2023, 74(2): 690-697. |
[10] | Feng WANG, Shunxin ZHANG, Fangbo YU, Ya LIU, Liejin GUO. Optimization strategy for producing carbon based fuels by photocatalytic CO2 reduction [J]. CIESC Journal, 2023, 74(1): 29-44. |
[11] | Xuqing WANG, Shenglin YAN, Litao ZHU, Xibao ZHANG, Zhenghong LUO. Research progress on the mass transfer process of CO2 absorption by amines in a packed column [J]. CIESC Journal, 2023, 74(1): 237-256. |
[12] | Muzi LI, Guowei JIA, Yanlong ZHAO, Xin ZHANG, Jianrong LI. The progress of metal-organic frameworks for non-CO2 greenhouse gases capture [J]. CIESC Journal, 2023, 74(1): 365-379. |
[13] | Yingxi DANG, Peng TAN, Xiaoqin LIU, Linbing SUN. Temperature swing for CO2 capture driven by radiative cooling and solar heating [J]. CIESC Journal, 2023, 74(1): 469-478. |
[14] | Xin LI, Shaojuan ZENG, Kuilin PENG, Lei YUAN, Xiangping ZHANG. Research progress and tendency of CO2 electrocatalytic reduction to syngas [J]. CIESC Journal, 2023, 74(1): 313-329. |
[15] | Yan WANG, Jia HE, Jingjing YANG, Chendi LIN, Wentao JI. Inhibition of polyethylene dust explosion by oxalate and bicarbonate [J]. CIESC Journal, 2022, 73(9): 4207-4216. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||