CIESC Journal ›› 2023, Vol. 74 ›› Issue (2): 721-734.DOI: 10.11949/0438-1157.20221530
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Jianxun CHEN1,2(), Jinping LIU1,2,3(), Xiongwen XU1,2, Yinhao YU1,2
Received:
2022-11-23
Revised:
2023-02-04
Online:
2023-03-21
Published:
2023-02-05
Contact:
Jinping LIU
陈建勋1,2(), 刘金平1,2,3(), 许雄文1,2, 余银豪1,2
通讯作者:
刘金平
作者简介:
陈建勋(1994—),男,博士研究生,171203147@qq.com
基金资助:
CLC Number:
Jianxun CHEN, Jinping LIU, Xiongwen XU, Yinhao YU. Numerical simulation and performance optimization of a new loop gravity heat pipe[J]. CIESC Journal, 2023, 74(2): 721-734.
陈建勋, 刘金平, 许雄文, 余银豪. 一种新型环路重力热管的数值模拟和性能优化[J]. 化工学报, 2023, 74(2): 721-734.
Add to citation manager EndNote|Ris|BibTeX
Parameter | Value |
---|---|
heating block | |
block size | 120 mm×120 mm×50 mm |
heating rod size | 100 mm×10 mmϕ |
evaporator | |
whole size | 140 mm×120 mm×21 mm |
top wall thickness | 3 mm |
side wall thickness | 5.5 mm |
bottom wall thickness | 3 mm |
square column size | 3 mm×3 mm×15 mm |
square column distance | 3 mm |
inlet diameter (O/I) length | 8.5 mm/6.35 mm 53 mm |
outlet diameter (O/I) length upward tube | 8.5 mm/6.35 mm 65 mm |
diameter (O/I) | 10 mm/6.5 mm |
length | 2100 mm |
downward tube | |
diameter (O/I) length | 10 mm/6.5 mm 1800 mm |
Table 1 The structure of evaporator
Parameter | Value |
---|---|
heating block | |
block size | 120 mm×120 mm×50 mm |
heating rod size | 100 mm×10 mmϕ |
evaporator | |
whole size | 140 mm×120 mm×21 mm |
top wall thickness | 3 mm |
side wall thickness | 5.5 mm |
bottom wall thickness | 3 mm |
square column size | 3 mm×3 mm×15 mm |
square column distance | 3 mm |
inlet diameter (O/I) length | 8.5 mm/6.35 mm 53 mm |
outlet diameter (O/I) length upward tube | 8.5 mm/6.35 mm 65 mm |
diameter (O/I) | 10 mm/6.5 mm |
length | 2100 mm |
downward tube | |
diameter (O/I) length | 10 mm/6.5 mm 1800 mm |
饱和温度Ts/℃ | 饱和压力ps/MPa | 液体密度ρl /(kg/m3) | 气体密度ρg/(kg/m3) | 汽化潜热r/(kJ/kg) |
---|---|---|---|---|
0 | 0.2928 | 1294.80 | 14.43 | 198.60 |
10 | 0.4146 | 1261.00 | 20.23 | 190.74 |
20 | 0.5717 | 1225.30 | 27.78 | 182.28 |
30 | 0.7702 | 1187.50 | 37.54 | 173.10 |
40 | 1.0166 | 1146.70 | 50.09 | 163.02 |
Table 2 Some thermal physical parameters of R134a
饱和温度Ts/℃ | 饱和压力ps/MPa | 液体密度ρl /(kg/m3) | 气体密度ρg/(kg/m3) | 汽化潜热r/(kJ/kg) |
---|---|---|---|---|
0 | 0.2928 | 1294.80 | 14.43 | 198.60 |
10 | 0.4146 | 1261.00 | 20.23 | 190.74 |
20 | 0.5717 | 1225.30 | 27.78 | 182.28 |
30 | 0.7702 | 1187.50 | 37.54 | 173.10 |
40 | 1.0166 | 1146.70 | 50.09 | 163.02 |
Parameter | Uncertainty (u) |
---|---|
T-type thermocouple, T K-type thermocouple, T | 0.5 K 1.0 K |
Pressure sensor, p Power sensor, Q | 7500 Pa 8.8 W |
Table 3 Uncertainty analysis (confidence level 95%)
Parameter | Uncertainty (u) |
---|---|
T-type thermocouple, T K-type thermocouple, T | 0.5 K 1.0 K |
Pressure sensor, p Power sensor, Q | 7500 Pa 8.8 W |
Wall material | Working fluid | |||
---|---|---|---|---|
copper | R-134a | 5.5 mm/134.5 mm | 4.5 mm/115.5 mm | 0 mm/15 mm |
Table 4 Settings of geometric model
Wall material | Working fluid | |||
---|---|---|---|---|
copper | R-134a | 5.5 mm/134.5 mm | 4.5 mm/115.5 mm | 0 mm/15 mm |
CFD模型参数设置项 | 设置值 |
---|---|
求解器类型 | Pressure-based |
算法(压力-速度耦合) | PISO |
空间离散化 | |
Gradient | Least square cell based |
Pressure | PRESTO |
Density | Second order upwind |
Momentum | Second order upwind |
Volume fraction | Geo-reconstruct |
Turbulent kinetic energy | First order upwind |
Turbulent dissipation rate | First order upwind |
Energy | Second order upwind |
时间步长离散化 | First order implicit |
残差 | |
Continuity X-velocity Y-velocity Z-velocity Energy k | 1×10-3 1×10-4 1×10-4 1×10-4 1×10-8 1×10-4 1×10-4 |
时间步长 | 0.0002s |
每个时间步长的最大迭代次数 | 40 |
湍流模型 | k-ε realizable |
湍流动能传输的有效Prandtl数 | 0.8 |
湍流耗散率传输的有效Prandtl数 | 0.8 |
能量的湍流Prandtl数 | 1 |
Table 5 CFD model settings
CFD模型参数设置项 | 设置值 |
---|---|
求解器类型 | Pressure-based |
算法(压力-速度耦合) | PISO |
空间离散化 | |
Gradient | Least square cell based |
Pressure | PRESTO |
Density | Second order upwind |
Momentum | Second order upwind |
Volume fraction | Geo-reconstruct |
Turbulent kinetic energy | First order upwind |
Turbulent dissipation rate | First order upwind |
Energy | Second order upwind |
时间步长离散化 | First order implicit |
残差 | |
Continuity X-velocity Y-velocity Z-velocity Energy k | 1×10-3 1×10-4 1×10-4 1×10-4 1×10-8 1×10-4 1×10-4 |
时间步长 | 0.0002s |
每个时间步长的最大迭代次数 | 40 |
湍流模型 | k-ε realizable |
湍流动能传输的有效Prandtl数 | 0.8 |
湍流耗散率传输的有效Prandtl数 | 0.8 |
能量的湍流Prandtl数 | 1 |
1 | Zhang H N, Shao S Q, Tian C Q, et al. A review on thermosyphon and its integrated system with vapor compression for free cooling of data centers[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 789-798. |
2 | Samba A, Louahlia-Gualous H, Le Masson S, et al. Two-phase thermosyphon loop for cooling outdoor telecommunication equipments[J]. Applied Thermal Engineering, 2013, 50(1): 1351-1360. |
3 | 曲燕. 环路热管技术的研究热点和发展趋势[J]. 低温与超导, 2009, 37(2): 7-14. |
Qu Y. Hot study and development trend of loop heat pipes[J]. Cryogenics and Superconductivity, 2009, 37(2): 7-14 | |
4 | Bai L Z, Guo J H, Lin G P, et al. Steady-state modeling and analysis of a loop heat pipe under gravity-assisted operation[J]. Applied Thermal Engineering, 2015, 83: 88-97. |
5 | Tuhin A R, Huynh P H, Htoo K Z, et al. Thermal performance comparison of flat plate evaporator loop heat pipe operating between horizontal condition and gravity assisted condition[J]. Journal of Physics: Conference Series, 2018, 1086: 012013. |
6 | Zhu K, Li X Q, Li H L, et al. Experimental and theoretical study of a novel loop heat pipe[J]. Applied Thermal Engineering, 2018, 130: 354-362 |
7 | 战洪仁, 惠尧, 吴众. 闭式热虹吸管强化传热研究进展[J]. 化工进展, 2017, 36(8): 2764-2775 |
Zhan H R, Hui Y, Wu Z. Research progress on heat transfer enhancement in closed thermosyphon[J]. Chemical Industry and Engineering Progress, 2017, 36(8): 2764-2775 | |
8 | 张先锋. 平板式环路热管性能的实验[J]. 化工进展, 2012, 31(6): 1200-1205. |
Zhang X F. Experimental investigation on the performance of loop heat pipe with flat evaporator[J]. Chemical Industry and Engineering Progress, 2012, 31(6): 1200-1205 | |
9 | 赵忠超, 周根明, 陈育平, 等. 环路热管理论研究进展[J]. 江苏科技大学学报(自然科学版), 2009, 23(5): 416-420. |
Zhao Z C, Zhou G M, Chen Y P, et al. Progress in loop heat pipe theory[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2009, 23(5): 416-420 | |
10 | 梁灵娇, 刘金平, 许雄文. 用于高热通量电子散热的平板环路重力热管[J]. 化工学报, 2018, 69(10): 4231-4238. |
Liang L J, Liu J P, Xu X W. Novel flat plate evaporator of loop gravity assisted heat pipe for high heat flux electronic cooling[J]. CIESC Journal, 2018, 69(10): 4231-4238 | |
11 | Gai D X, Liu Z C, Liu W, et al. Experimental investigation of temperature oscillation in miniature loop heat pipe [J]. AIP Conference Proceedings, 2010, 1207(1): 465-470 |
12 | 孙志坚. 电子器件回路型热管散热器的数值模拟与试验研究[D]. 杭州: 浙江大学, 2007. |
Sun Z J. Numerical simulation and experimental studies on loop heat pipe radiator for electronic device cooling[D]. Hangzhou: Zhejiang University, 2007. | |
13 | Tsai T E, Wu H H, Chang C C, et al. Two-phase closed thermosyphon vapor-chamber system for electronic cooling[J]. International Communications in Heat and Mass Transfer, 2010, 37(5): 484-489. |
14 | 陈彬彬, 刘伟, 刘志春, 等. 平板式小型环路热管的实验研究[J]. 宇航学报, 2011, 32(4): 953-958. |
Chen B B, Liu W, Liu Z C, et al. Experimental study on miniature loop heat pipe with flat-plate evaporator[J]. Journal of Astronautics, 2011, 32(4): 953-958. | |
15 | Liu Z C, Wang D D, Jiang C, et al. Experimental study on loop heat pipe with two-wick flat evaporator[J]. International Journal of Thermal Sciences, 2015, 94: 9-17. |
16 | 韩晓红, 闵旭伟, 李鹏, 等. 一种利用气泡泵效应重力辅助回路热管的实验研究[J]. 西安交通大学学报, 2012, 46(3): 9-14. |
Han X H, Min X W, Li P, et al. Experimental study on an thermosyphon loop with bubble pump effect[J]. Journal of Xi'an Jiaotong University, 2012, 46(3): 9-14 | |
17 | Hong S H, Zhang X Q, Wang S F, et al. Experiment study on heat transfer capability of an innovative gravity assisted ultra-thin looped heat pipe[J]. International Journal of Thermal Sciences, 2015, 95: 106-114. |
18 | Wang D D, Liu Z C, Shen J, et al. Experimental study of the loop heat pipe with a flat disk-shaped evaporator[J]. Experimental Thermal and Fluid Science, 2014, 57: 157-164. |
19 | Liu Z C, Gai D X, Li H, et al. Investigation of impact of different working fluids on the operational characteristics of miniature LHP with flat evaporator[J]. Applied Thermal Engineering, 2011, 31(16): 3387-3392. |
20 | 李志崇. 平板型双毛细芯蒸发器环路热管的实验研究[D]. 武汉: 华中科技大学, 2015. |
Li Z C. Experimental study of the double capillary wick evaporator flat plate type loop heat pipes[D]. Wuhan: Huazhong University of Science and Technology, 2015. | |
21 | 柏立战, 林贵平, 张红星. 重力辅助环路热管稳态运行特性的实验研究[J]. 航空学报, 2008, 29(5): 1112-1117. |
Bai L Z, Lin G P, Zhang H X. Experimental study on steady-state operating characteristics of gravity-assisted loop heat pipes[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(5): 1112-1117. | |
22 | Tu Z K, Liu Z C, Liu C, et al. Heat and mass transfer in a flat disc-shaped evaporator of a miniature loop heat pipe[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2009, 223(6): 609-618. |
23 | Alizadehdakhel A, Rahimi M, Alsairafi A A. CFD modeling of flow and heat transfer in a thermosyphon[J]. International Communications in Heat and Mass Transfer, 2010, 37(3): 312-318. |
24 | Fadhl B, Wrobel L C, Jouhara H. CFD modelling of a two-phase closed thermosyphon charged with R134a and R404a[J]. Applied Thermal Engineering, 2015, 78: 482-490. |
25 | Wang X Y, Wang Y F, Chen H J, et al. A combined CFD/visualization investigation of heat transfer behaviors during geyser boiling in two-phase closed thermosyphon[J]. International Journal of Heat and Mass Transfer, 2018, 121: 703-714. |
26 | Jiang Y Y, Osada H, Inagaki M, et al. Dynamic modeling on bubble growth, detachment and heat transfer for hybrid-scheme computations of nucleate boiling[J]. International Journal of Heat and Mass Transfer, 2013, 56(1/2): 640-652. |
27 | Abadi N R, Ahmadpour A, Meyer J P. Numerical simulation of pool boiling on smooth, vertically aligned tandem tubes[J]. International Journal of Thermal Science, 2018, 132: 628-644. |
28 | Kunkelmann C, Stephan P. Numerical simulation of the transient heat transfer during nucleate boiling of refrigerant HFE-7100[J]. International Journal of Refrigeration, 2010, 33(7): 1221-1228. |
29 | Sato Y, Niceno B. Nucleate pool boiling simulations using the interface tracking method: boiling regime from discrete bubble to vapor mushroom region[J]. International Journal of Heat and Mass Transfer, 2017, 105: 505-524. |
30 | Ruan J G, Liu J P, Xu X W, et al. Experimental study of an R290 split-type air conditioner using a falling film condenser[J]. Applied Thermal Engineering, 2018, 140: 325-333. |
31 | Moffat R J. Describing the uncertainties in experimental results[J]. Experimental Thermal and Fluid Science, 1988, 1(1): 3-17. |
[1] | Haopeng SHI, Dawen ZHONG, Xuexin LIAN, Junfeng ZHANG. Experimental study on the downward-facing surface enhanced boiling heat transfer of multiscale groove-fin structures [J]. CIESC Journal, 2023, 74(7): 2880-2888. |
[2] | Hai WANG, Hong LIN, Chen WANG, Haojie XU, Lei ZUO, Junfeng WANG. Investigation of enhanced boiling heat transfer on porous structural surfaces by high voltage electric field [J]. CIESC Journal, 2023, 74(7): 2869-2879. |
[3] | Xiongkang SUN, Qiang LI. Research on enhanced boiling heat transfer of multilevel composite wick structure [J]. CIESC Journal, 2022, 73(3): 1127-1135. |
[4] | LIN Shiquan, ZHAO Yaxin, LYU Zhongyuan, LAI Zhancheng, HU Haitao. Effect of hydrophilicity and hydrophobicity on pool boiling heat transfer characteristics on metal foam [J]. CIESC Journal, 2021, 72(S1): 295-301. |
[5] | Hailiang CAO, Hongfei ZHANG, Qianlong ZUO, Qi AN, Ziyang ZHANG, Hongbei LIU. Study on pool boiling heat transfer performance of trapezoidal microchannel surface [J]. CIESC Journal, 2021, 72(8): 4111-4120. |
[6] | YUAN Xudong,JIA Lei,ZHOU Dao,ZHAO Panpan,WU Junfeng,WANG Rujin. Research progress on basic theory and improvement technology for critical heat flux of microchannel [J]. CIESC Journal, 2021, 72(4): 1796-1814. |
[7] | Shuai MOU, Changying ZHAO, Zhiguo XU. Pool boiling heat transfer performance and mechanism of square copper pillar arrays with partially-modified surface [J]. CIESC Journal, 2019, 70(4): 1291-1301. |
[8] | Hongxia CHEN, Yuan SUN, Yifei GONG, Linbin HUANG. Visual measurement and data analysis of pool boiling on silicon surfaces [J]. CIESC Journal, 2019, 70(4): 1309-1317. |
[9] | HUANG Ruilian, ZHAO Changying, XU Zhiguo. Bubble departure in gradient metal foam under pool boiling conditions [J]. CIESC Journal, 2018, 69(7): 2890-2898. |
[10] | DU Baozhou, KONG Lingjian, GUO Baocang, LI Huijun, LIU Zhigang, LÜ Mingming. Critical heat flux characteristics during flow boiling in a micro channel with micro pin fins [J]. CIESC Journal, 2018, 69(5): 1989-1998. |
[11] | CHEN Hanzhi, YAO Yuan, GONG Maoqiong, CHEN Gaofei, ZOU Xin, DONG Xueqiang, SHEN Jun. Experimental study on bubble departure diameter of ethane saturated nucleate pool boiling [J]. CIESC Journal, 2018, 69(4): 1419-1427. |
[12] | LIANG Lingjiao, LIU Jinping, XU Xiongwen. Novel flat plate evaporator of loop gravity assisted heat pipe for high heat flux electronic cooling [J]. CIESC Journal, 2018, 69(10): 4231-4238. |
[13] | CHAI Yongzhi, ZHANG Wei, LI Ya, ZHAO Yadong. Pool boiling heat transfer on heterogeneous wetting microchannel surfaces [J]. CIESC Journal, 2017, 68(5): 1852-1859. |
[14] | JI Wentao, ZHANG Dingcai, ZHAO Chuangyao, HE Yaling, TAO Wenquan. Pool boiling heat transfer outside horizontal tubes at higher heat flux [J]. CIESC Journal, 2016, 67(S1): 28-32. |
[15] | ZHONG Dawen, MENG Ji'an, LI Zhixin. Saturated pool boiling from downward facing structured surfaces with grooves [J]. CIESC Journal, 2016, 67(9): 3559-3565. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||