CIESC Journal ›› 2024, Vol. 75 ›› Issue (4): 1183-1197.DOI: 10.11949/0438-1157.20231219
• Reviews and monographs • Previous Articles Next Articles
Binyu MO(), Yaxin ZHANG, Guozhen LIU(), Gongping LIU(), Wanqin JIN
Received:
2023-11-23
Revised:
2023-12-01
Online:
2024-06-06
Published:
2024-04-25
Contact:
Guozhen LIU, Gongping LIU
通讯作者:
刘国振,刘公平
作者简介:
莫滨宇(1999—),女,硕士研究生,mby@njtech.edu.cn
基金资助:
CLC Number:
Binyu MO, Yaxin ZHANG, Guozhen LIU, Gongping LIU, Wanqin JIN. Recent progress of metal-organic framework membranes for mono/divalent ions separation[J]. CIESC Journal, 2024, 75(4): 1183-1197.
莫滨宇, 张雅馨, 刘国振, 刘公平, 金万勤. 面向一/二价离子分离的金属有机骨架膜研究进展[J]. 化工学报, 2024, 75(4): 1183-1197.
Add to citation manager EndNote|Ris|BibTeX
Fig.2 (a) Schematic diagram of the formation of ZIF-8 film by contra diffusion of Zn2+ and Hmim through porous nylon support[54]; (b) Schematic diagram of the preparation of ZIF-71 membrane via the contra diffusion method[55]
Fig.4 (a) Schematic diagram of the preparation of ZIF-8 membrane via FCDS method; (b) SEM image of blank support; SEM images of surface (c) and cross-section (d) of ZIF-8 membrane [61]
Fig.5 Schematic diagram of formation of MOF membranes without lattice defects (a); Ultra-low dose spherical aberration correction transmission images of MOF membrane: defective lattice (b) and perfect lattice (c)[53]
Fig.6 Schematic diagrams of preparation of CuBTC film by layer-by-layer (LBL) assembly method (a)[65] and preparation of ZIF-8 film by rapid thermal deposition (RTD) method (b)[70]
Fig.7 (a) Schematic diagram of the formation process for UiO-66-COOH SCN membrane via interfacial growth method; (b) Schematic diagram of the formation process for UiO-66-(COOH)2 SCN membrane via secondary growth method[73]
Fig.9 (a) Schematic diagram of PSS@HKUST-1 membrane preparation[81]; (b) Schematic diagram of electric field enhanced ions permeation process and (c) measurement device[82]; (d) Mono/divalent ions separation performance of UiO-67 membrane; (e) Li+/Mg2+ separation performance comparison of UiO-67 membrane; (f) Schematic diagram of ions separation mechanism in UiO-67 membrane[82]; (g) Ions separation performance of TA- Fe Ⅲ/ZIF-8 membrane[84]
Fig.10 (a) Schematic of UiO-66-(COOH)2 SNC membrane fabrication[74]; (b) Illustration of negatively charged porous UiO-66-COOH-SCN membrane for ions transport[72]; (c) I - V curves of UiO-66-(COOH)2-SCN channel membranes measured in 0.1 mol·L-1 electrolyte solution (pH 5.7); (d) Ions separation performance of UiO-66-(COOH)2-SCN membrane(The inset is schematic diagram of ions permeation experiments); (e) Molecular structure change of the large cavity of UiO-66-(COOH)2 under different conditions; (f) Effect of pH on the conductivity of ions in UiO-66-(COOH)2 membrane[74]; (g) I-V curves of UiO-66-COOH-SNC measured in 0.1 mol·L-1 chloride salt solution; (h) K+/Mg2+ separation performance comparison of UiO-66-COOH-SNC membrane[72]
Fig.11 SEM surface (a) and cross-sectional (b) images of UiO-66-NH2 membrane; Schematic diagram of ionic sieving performance evaluation device by electrodialysis (c)[87]; Ions separation performance of UiO-66-NH2 membrane (d)[88]
1 | Sholl D S, Lively R P. Seven chemical separations to change the world[J]. Nature, 2016, 532(7600): 435-437. |
2 | 金万勤, 徐南平. 限域传质分离膜[J]. 化工学报, 2018, 69(1): 50-56. |
Jin W Q, Xu N P. Membrane separation based on mechanism of confined mass transfer[J]. CIESC Journal, 2018, 69(1): 50-56. | |
3 | Li X H, Mo Y H, Qing W H, et al. Membrane-based technologies for lithium recovery from water lithium resources: a review[J]. Journal of Membrane Science, 2019, 591: 117317. |
4 | Koros W J, Zhang C. Materials for next-generation molecularly selective synthetic membranes[J]. Nature Materials, 2017, 16(3): 289-297. |
5 | Park H B, Kamcev J, Robeson L M, et al. Maximizing the right stuff: the trade-off between membrane permeability and selectivity[J]. Science, 2017, 356(6343): eaab0530. |
6 | Lively R P, Sholl D S. From water to organics in membrane separations[J]. Nature Materials, 2017, 16(3): 276-279. |
7 | Werber J R, Osuji C O, Elimelech M. Materials for next-generation desalination and water purification membranes[J]. Nature Reviews Materials, 2016, 1(5): 16018. |
8 | Chen G N, Liu G Z, Pan Y, et al. Zeolites and metal-organic frameworks for gas separation: the possibility of translating adsorbents into membranes[J]. Chemical Society Reviews, 2023, 52(14): 4586-4602. |
9 | Furukawa H, Cordova K E, O'Keeffe M, et al. The chemistry and applications of metal-organic frameworks[J]. Science, 2013, 341(6149): 1230444. |
10 | Huang K, Dong X L, Ren R F, et al. Fabrication of homochiral metal-organic framework membrane for enantio separation of racemic diols[J]. AIChE Journal, 2013, 59(11): 4364-4372. |
11 | Qiu S L, Xue M, Zhu G S. Metal-organic framework membranes: from synthesis to separation application[J]. Chemical Society Reviews, 2014, 43(16): 6116-6140. |
12 | Peng Y A, Li Y S, Ban Y J, et al. Metal-organic framework nanosheets as building blocks for molecular sieving membranes[J]. Science, 2014, 346(6215): 1356-1359. |
13 | Rodenas T, Luz I, Prieto G, et al. Metal-organic framework nanosheets in polymer composite materials for gas separation[J]. Nature Materials, 2015, 14(1): 48-55. |
14 | Knebel A, Geppert B, Volgmann K, et al. Defibrillation of soft porous metal-organic frameworks with electric fields[J]. Science, 2017, 358(6361): 347-351. |
15 | Datta S J, Mayoral A, Murthy Srivatsa Bettahalli N, et al. Rational design of mixed-matrix metal-organic framework membranes for molecular separations[J]. Science, 2022, 376(6597): 1080-1087. |
16 | Wang W J, Dong X L, Nan J P, et al. A homochiral metal-organic framework membrane for enantioselective separation[J]. Chemical Communications, 2012, 48(56): 7022-7024. |
17 | Chen G N, Chen C L, Guo Y N, et al. Solid-solvent processing of ultrathin, highly loaded mixed-matrix membrane for gas separation[J]. Science, 2023, 381(6664): 1350-1356. |
18 | Qian Q H, Asinger P A, Lee M J, et al. MOF-based membranes for gas separations[J]. Chemical Reviews, 2020, 120(16): 8161-8266. |
19 | Zhao J X, Pan T, Jiang F F, et al. Polycrystalline metal-organic framework membranes for separation of light hydrocarbons[J]. Chemistry-A European Journal, 2023, 29(41): e202301132. |
20 | Knebel A, Caro J. Metal-organic frameworks and covalent organic frameworks as disruptive membrane materials for energy-efficient gas separation[J]. Nature Nanotechnology, 2022, 17(9): 911-923. |
21 | Zhou S, Shekhah O, Ramírez A, et al. Asymmetric pore windows in MOF membranes for natural gas valorization[J]. Nature, 2022, 606(7915): 706-712. |
22 | Lu Z, Wu Y, Ding L, et al. A lamellar MXene (Ti3C2T x )/PSS composite membrane for fast and selective lithium-ion separation[J]. Angewandte Chemie International Edition, 2021, 133(41): 22439-22443. |
23 | Férey G. Hybrid porous solids: past, present, future[J]. Chemical Society Reviews, 2008, 37(1): 191-214. |
24 | 葛亮, 伍斌, 王鑫, 等. MOFs分离膜在水系分离中的应用[J]. 化工学报, 2019, 70(10): 3748-3763. |
Ge L, Wu B, Wang X, et al. Application in water system separation of MOFs separation membranes[J]. CIESC Journal, 2019, 70(10): 3748-3763. | |
25 | Bai Y, Dou Y B, Xie L H, et al. Zr-based metal-organic frameworks: design, synthesis, structure, and applications[J]. Chemical Society Reviews, 2016, 45(8): 2327-2367. |
26 | Burtch N C, Jasuja H, Walton K S. Water stability and adsorption in metal-organic frameworks[J]. Chemical Reviews, 2014, 114(20): 10575-10612. |
27 | Liu G Z, Wang Z G, Chen C L, et al. Zr-MOF membranes with ultra-fast water-selective permeation towards intensification of esterification reaction[J]. Chemical Communications, 2023, 59(52): 8075-8078. |
28 | Li X, Liu Y X, Wang J, et al. Metal-organic frameworks based membranes for liquid separation[J]. Chemical Society Reviews, 2017, 46(23): 7124-7144. |
29 | Liu X L, Demir N K, Wu Z T, et al. Highly water-stable zirconium metal-organic framework UiO-66 membranes supported on alumina hollow fibers for desalination[J]. Journal of the American Chemical Society, 2015, 137(22): 6999-7002. |
30 | Zhang Y Y, Feng X, Li H W, et al. Photoinduced postsynthetic polymerization of a metal-organic framework toward a flexible stand-alone membrane[J]. Angewandte Chemie International Edition, 2015, 54(14): 4259-4263. |
31 | Ren D, Bi X, Liu T, et al. Oligo-ethylene-glycol based thin-film composite nanofiltration membranes for effective separation of mono-/di-valent anions [J]. Journal of Materials Chemistry A, 2019, 7(4): 1849-1860. |
32 | Sun P Z, Chen Q, Li X D, et al. Highly efficient quasi-static water desalination using monolayer graphene oxide/titania hybrid laminates[J]. NPG Asia Materials, 2015, 7(2): e162. |
33 | 孟庆伟, 张峰, 陈璐, 等. 离子筛吸附与陶瓷膜耦合用于盐湖卤水提锂[J]. 化工学报, 2017, 68(5): 1899-1905. |
Meng Q W, Zhang F, Chen L, et al. Lithium recovery from Qarham brine using adsorption-membrane separation hybrid system[J]. CIESC Journal, 2017, 68(5): 1899-1905. | |
34 | Xu P, Qian X, Guo C, et al. Nanofiltration technology used for separation of magnesium and lithium from salt lake brine: a survey[J]. Materials Review, 2019, 33(2A): 410-417. |
35 | Liu G, Zhao Z W, Ghahreman A. Novel approaches for lithium extraction from salt-lake brines: a review[J]. Hydrometallurgy, 2019, 187: 81-100. |
36 | Wang Q A, Wang Y E, Chen B Z, et al. Designing high-performance nanofiltration membranes for high-salinity separation of sulfate and chloride in the chlor-alkali process[J]. Industrial & Engineering Chemistry Research, 2019, 58(27): 12280-12290. |
37 | Liu J, Yuan J, Ji Z, et al. Study on refining of high salinity solution by nanofiltration and its mass transfer performance[J]. Technology of Water Treatment, 2016, 42(4): 17-20. |
38 | Lado J J, Zornitta R L, Vázquez Rodríguez I, et al. Sugarcane biowaste-derived biochars as capacitive deionization electrodes for brackish water desalination and water-softening applications[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(23): 18992-19004. |
39 | Liang J J, Huang Y, Zhang F, et al. The use of graphene oxide membranes for the softening of hard water[J]. Science China Technological Sciences, 2014, 57(2): 284-287. |
40 | 黄清波, 刘公平, 金万勤. 一/二价离子分离膜材料研究进展[J]. 化工学报, 2021, 72(1): 334-350. |
Huang Q B, Liu G P, Jin W Q. Recent progress of membrane materials for mono- / di-valent ions separation[J]. CIESC Journal, 2021, 72(1): 334-350. | |
41 | Wang Y, Smith S J D, Liu Y, et al. Surface hydrophilicity modification of thin-film composite membranes with metal-organic frameworks (MOFs) Ti-UiO-66 for simultaneous enhancement of anti-fouling property and desalination performance[J]. Separation and Purification Technology, 2022, 302: 122001. |
42 | Deng Y Y, Wu Y N, Chen G Q, et al. Metal-organic framework membranes: recent development in the synthesis strategies and their application in oil-water separation[J]. Chemical Engineering Journal, 2021, 405: 127004. |
43 | Zhang H C, Hou J E, Hu Y X, et al. Ultrafast selective transport of alkali metal ions in metal organic frameworks with subnanometer pores[J]. Science Advances, 2018, 4(2): eaaq0066. |
44 | Liu J X, Wöll C. Surface-supported metal-organic framework thin films: fabrication methods, applications, and challenges[J]. Chemical Society Reviews, 2017, 46(19): 5730-5770. |
45 | Huang K, Dong Z Y, Li Q Q, et al. Growth of a ZIF-8 membrane on the inner-surface of a ceramic hollow fiber via cycling precursors[J]. Chemical Communications, 2013, 49(87): 10326-10328. |
46 | Li W B, Zhang Y F, Li Q B, et al. Metal-organic framework composite membranes: synthesis and separation applications[J]. Chemical Engineering Science, 2015, 135: 232-257. |
47 | Kang Z X, Xue M, Fan L L, et al. “Single nickel source” in situ fabrication of a stable homochiral MOF membrane with chiral resolution properties[J]. Chemical Communications, 2013, 49(90): 10569-10571. |
48 | Liu Y Y, Ng Z, Khan E A, et al. Synthesis of continuous MOF-5 membranes on porous α-alumina substrates[J]. Microporous and Mesoporous Materials, 2009, 118(1/2/3): 296-301. |
49 | Cong S Z, Yuan Y, Wang J X, et al. Highly water-permeable metal-organic framework MOF-303 membranes for desalination[J]. Journal of the American Chemical Society, 2021, 143(48): 20055-20058. |
50 | Zhang F, Zou X Q, Gao X E, et al. Hydrogen selective NH2-MIL-53(Al) MOF membranes with high permeability[J]. Advanced Functional Materials, 2012, 22(17): 3583-3590. |
51 | Nan J P, Dong X L, Wang W J, et al. Formation mechanism of metal-organic framework membranes derived from reactive seeding approach[J]. Microporous and Mesoporous Materials, 2012, 155: 90-98. |
52 | Hu Y X, Dong X L, Nan J P, et al. Metal-organic framework membranes fabricated via reactive seeding[J]. Chemical Communications, 2011, 47(2): 737-739. |
53 | Liu G Z, Guo Y N, Chen C L, et al. Eliminating lattice defects in metal-organic framework molecular-sieving membranes[J]. Nature Materials, 2023, 22(6): 769-776. |
54 | Yao J F, Dong D H, Li D, et al. Contra-diffusion synthesis of ZIF-8 films on a polymer substrate[J]. Chemical Communications, 2011, 47(9): 2559-2561. |
55 | Huang K, Li Q Q, Liu G P, et al. A ZIF-71 hollow fiber membrane fabricated by contra-diffusion[J]. ACS Applied Materials & Interfaces, 2015, 7(30): 16157-16160. |
56 | Brown A J, Brunelli N A, Eum K, et al. Interfacial microfluidic processing of metal-organic framework hollow fiber membranes[J]. Science, 2014, 345(6192): 72-75. |
57 | Li M Y, Dincă M. Selective formation of biphasic thin films of metal-organic frameworks by potential-controlled cathodic electrodeposition[J]. Chemical Science, 2014, 5(1): 107-111. |
58 | Hod I, Bury W, Karlin D M, et al. Directed growth of electroactive metal-organic framework thin films using electrophoretic deposition[J]. Advanced Materials, 2014, 26(36): 6295-6300. |
59 | Li M Y, Dincă M. Reductive electrosynthesis of crystalline metal-organic frameworks[J]. Journal of the American Chemical Society, 2011, 133(33): 12926-12929. |
60 | Cheng Y D, Datta S J, Zhou S, et al. Advances in metal-organic framework-based membranes[J]. Chemical Society Reviews, 2022, 51(19): 8300-8350. |
61 | Zhou S, Wei Y Y, Li L B, et al. Paralyzed membrane: current-driven synthesis of a metal-organic framework with sharpened propene/propane separation[J]. Science Advances, 2018, 4(10): eaau1393. |
62 | Dissegna S, Epp K, Heinz W R, et al. Defective metal-organic frameworks[J]. Advanced Materials, 2018, 30: 1704501. |
63 | Wang X L, Lyu Q, Tong T Z, et al. Robust ultrathin nanoporous MOF membrane with intra-crystalline defects for fast water transport[J]. Nature Communications, 2022, 13: 266. |
64 | Wang C, Sun Y W, Li L B, et al. Titanium-oxo cluster assisted fabrication of a defect-rich Ti-MOF membrane showing versatile gas-separation performance[J]. Angewandte Chemie International Edition, 2022, 61(26): e202203663. |
65 | Nagaraju D, Bhagat D G, Banerjee R, et al. In situ growth of metal-organic frameworks on a porous ultrafiltration membrane for gas separation[J]. Journal of Materials Chemistry A, 2013, 1(31): 8828-8835. |
66 | Yoo Y, Jeong H K. Rapid fabrication of metal organic framework thin films using microwave-induced thermal deposition[J]. Chemical Communications, 2008(21): 2441-2443. |
67 | Maina J W, Gonzalo C P, Merenda A, et al. The growth of high density network of MOF nano-crystals across macroporous metal substrates — solvothermal synthesis versus rapid thermal deposition[J]. Applied Surface Science, 2018, 427: 401-408. |
68 | Laybourn A, Katrib J, Ferrari-John R S, et al. Metal-organic frameworks in seconds via selective microwave heating[J]. Journal of Materials Chemistry A, 2017, 5(16): 7333-7338. |
69 | Yin N, Wang K, Li Z Q. Rapid microwave-promoted synthesis of Zr-MOFs: an efficient adsorbent for Pb(Ⅱ) removal[J]. Chemistry Letters, 2016, 45(6): 625-627. |
70 | Shah M, Gonzalez M, McCarthy M, et al. An unconventional rapid synthesis of high performance metal-organic framework membranes[J]. Langmuir, 2013, 29: 7896-7902. |
71 | Bux H, Liang F Y, Li Y S, et al. Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis[J]. Journal of the American Chemical Society, 2009, 131(44): 16000-16001. |
72 | Lu J, Zhang H C, Hu X Y, et al. Ultraselective monovalent metal ion conduction in a three-dimensional sub-1 nm nanofluidic device constructed by metal-organic frameworks[J]. ACS Nano, 2021, 15(1): 1240-1249. |
73 | Zhang H C, Li X Y, Hou J, et al. Angstrom-scale ion channels towards single-ion selectivity[J]. Chemical Society Reviews, 2022, 51(6): 2224-2254. |
74 | Lu J, Zhang H C, Hou J, et al. Efficient metal ion sieving in rectifying subnanochannels enabled by metal-organic frameworks[J]. Nature Materials, 2020, 19(7): 767-774. |
75 | Lu J, Xu H Y, Yu H, et al. Ultrafast rectifying counter-directional transport of proton and metal ions in metal-organic framework-based nanochannels[J]. Science Advances, 2022, 8(14): eabl5070. |
76 | Dutta S, de Luis R F, Goscianska J, et al. Metal-organic frameworks for water desalination[J]. Advanced Functional Materials, 2023: 2304790. |
77 | Liu Y Y, Zhu R, Srinivasakannan C, et al. Application of nanofiltration membrane based on metal-organic frameworks (MOFs) in the separation of magnesium and lithium from salt lakes[J]. Separations, 2022, 9(11): 344. |
78 | Pearson R G. Hard and soft acids and bases[J]. Journal of the American Chemical Society, 1963, 85(22): 3533-3539. |
79 | Liu X L, Wang X R, Kapteijn F. Water and metal-organic frameworks: from interaction toward utilization[J]. Chemical Reviews, 2020, 120(16): 8303-8377. |
80 | Ji Y L, Qian W J, Yu Y W, et al. Recent developments in nanofiltration membranes based on nanomaterials[J]. Chinese Journal of Chemical Engineering, 2017, 25(11): 1639-1652. |
81 | Guo Y, Ying Y L, Mao Y Y, et al. Polystyrene sulfonate threaded through a metal-organic framework membrane for fast and selective lithium-ion separation[J]. Angewandte Chemie International Edition, 2016, 55(48): 15120-15124. |
82 | Xu R M, Kang Y A, Zhang W M, et al. Oriented UiO-67 metal-organic framework membrane with fast and selective lithium-ion transport[J]. Angewandte Chemie International Edition, 2022, 61(3): e202115443. |
83 | Qi C Y, Li J, Shi Y Y, et al. ZIF-8 penetrating composite membrane for ion sieving[J]. Journal of Solid State Chemistry, 2022, 313: 123281. |
84 | Mohammad M, Lisiecki M, Liang K, et al. Metal-phenolic network and metal-organic framework composite membrane for lithium ion extraction[J]. Applied Materials Today, 2020, 21: 100884. |
85 | Zhang Z, Wen L P, Jiang L. Bioinspired smart asymmetric nanochannel membranes[J]. Chemical Society Reviews, 2018, 47(2): 322-356. |
86 | Lu J, Wang H T. Emerging porous framework material-based nanofluidic membranes toward ultimate ion separation[J]. Matter, 2021, 4(9): 2810-2830. |
87 | Xu T T, Shehzad M A, Yu D B, et al. Highly cation permselective metal-organic framework membranes with leaf-like morphology[J]. ChemSusChem, 2019, 12(12): 2593-2597. |
88 | Xu T T, Shehzad M A, Wang X, et al. Engineering leaf-like UiO-66-SO3H membranes for selective transport of cations[J]. Nano-Micro Letters, 2020, 12(1): 51. |
[1] | Zijia ZHANG, Xinyue QIU, Xiang SUN, Zhibin LUO, Haizhong LUO, Gaohong HE, Xuehua RUAN. Progress in molecular structure design for polyimide membrane materials to enhance CO2 permeation ability [J]. CIESC Journal, 2024, 75(4): 1137-1152. |
[2] | Kaibo ZHANG, Jiaxin SHEN, Yuxia LI, Peng TAN, Xiaoqin LIU, Linbing SUN. Controllable construction of Cu(Ⅰ) in Y zeolite for adsorptive separation of ethylene/ethane [J]. CIESC Journal, 2024, 75(4): 1607-1615. |
[3] | Yiru WEN, Jia FU, Dahuan LIU. Advances in machine learning-based materials research for MOFs: energy gas adsorption separation [J]. CIESC Journal, 2024, 75(4): 1370-1381. |
[4] | Xiao DONG, Zhishan BAI, Xiaoyong YANG, Wei YIN, Ningpu LIU, Qifan YU. Research and industrial application of coupled impurity removal technology in CHPPO process oxidation liquids [J]. CIESC Journal, 2024, 75(4): 1630-1641. |
[5] | Ying LIU, Fang ZHENG, Qiwei YANG, Zhiguo ZHANG, Qilong REN, Zongbi BAO. Recent progress in adsorption and separation of xylene isomers [J]. CIESC Journal, 2024, 75(4): 1081-1095. |
[6] | Tianyi LI, Yutai WU, Yongsheng WANG, Jiarui GU, Yiheng SONG, Fengcheng YANG, Guangping HAO. Advances in light isotopes separation and catalytic labeling [J]. CIESC Journal, 2024, 75(4): 1284-1301. |
[7] | Jun LI, Liang ZHAO, Jinsen GAO, Chunming XU. Research progress of extraction technology in processing different distillate by grade and composition [J]. CIESC Journal, 2024, 75(4): 1065-1080. |
[8] | Tiantian LYU, Min YUAN, Jiang WANG, Meizhen GAO, Jiahui YANG, Hong XU, Jinxiang DONG, Qi SHI. Preparation of ZTIF based hydrophobic micro-mesoporous carbon and their adsorption and separation performance of 5-hydroxymethylfurfural [J]. CIESC Journal, 2024, 75(4): 1642-1654. |
[9] | Lingxian ZHANG, Bin LIU, Lin DENG, Yuhang REN. PEMFC fault diagnosis based on improved TSO optimized Xception [J]. CIESC Journal, 2024, 75(3): 945-955. |
[10] | Yaowen TAN, Panxing JIANG, Qing DU, Wanqiu YU, Xiaofei WEN, Zhigang ZHAN. Numerical study of the effects of operating voltage on the degradation of membrane electrodes of PEMFC [J]. CIESC Journal, 2024, 75(3): 974-986. |
[11] | Xinrui ZHANG, Xuemei CHEN. CNT/PVA@carbon-cloth membrane for performance study of solar and electric-driven interfacial evaporation [J]. CIESC Journal, 2024, 75(3): 1028-1039. |
[12] | Pei WANG, Ruiming DUAN, Guangru ZHANG, Wanqin JIN. Modeling and simulation analysis of solar driven membrane separation biomethane hydrogen production process [J]. CIESC Journal, 2024, 75(3): 967-973. |
[13] | Lei XING, Shuai GUAN, Minghu JIANG, Lixin ZHAO, Meng CAI, Hailong LIU, Dehai CHEN. Study on structure optimization and performance of downhole gas-liquid hydrocyclone under high gas-liquid ratio [J]. CIESC Journal, 2024, 75(3): 900-913. |
[14] | Yansong CHEN, Da RUAN, Yuanbo LIU, Tong ZHENG, Shuaishuai ZHANG, Xuehu MA. Topology optimization and performance research of microchannel heat exchangers [J]. CIESC Journal, 2024, 75(3): 823-835. |
[15] | Zhipeng LIU, Changying ZHAO, Rui WU, Zhihao ZHANG. Experimental study of gas-liquid flow visualization in gradient porous transport layers based on hydrogen production by water electrolysis [J]. CIESC Journal, 2024, 75(2): 520-530. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||