CIESC Journal ›› 2024, Vol. 75 ›› Issue (11): 3935-3950.DOI: 10.11949/0438-1157.20240502
• Reviews and monographs • Previous Articles Next Articles
Hao CHEN(), Wenqi ZHAO, Haoyu FENG, Taotao FU, Chunying ZHU, Youguang MA(
)
Received:
2024-05-08
Revised:
2024-06-08
Online:
2024-12-26
Published:
2024-11-25
Contact:
Youguang MA
陈昊(), 赵文琪, 冯浩宇, 付涛涛, 朱春英, 马友光(
)
通讯作者:
马友光
作者简介:
陈昊(1999—),男,硕士研究生,hchen_2022@tju.edu.cn
CLC Number:
Hao CHEN, Wenqi ZHAO, Haoyu FENG, Taotao FU, Chunying ZHU, Youguang MA. Research progress on droplet sieving in microchannel[J]. CIESC Journal, 2024, 75(11): 3935-3950.
陈昊, 赵文琪, 冯浩宇, 付涛涛, 朱春英, 马友光. 微通道内液滴筛分的研究进展[J]. 化工学报, 2024, 75(11): 3935-3950.
Fig.2 Sequentially addressable dielectrophoretic array: (a) Concept and simulation of the SADA; (b) Schematic of SADA-based fluorescence-activated droplet sorter (SADA sorter in short); (c) Pictures of constructed SADA sorter[33]
Fig.3 Working principle of droplet manipulation using DEP force and droplet buoyancy: (a) Cross-sectional view of IDE region; (b) Top view of droplet manipulation region; (c) Schematic showing three functional sections of droplet bandpass filter device[34]
Fig.4 Sorting of droplets in upper/lower outlet: (a) No ultrasound, droplets followed the flow to the lower outlet; (b) Excitation at 463 kHz generated a λ/2 mode, which deflected droplet paths to upper outlet; (c), (d) Droplets were sorted by switching excitation frequency between 463 kHz and 979 kHz, corresponding to λ/2 and λ mode, respectively[40]
Fig.6 (a) Schematic diagram of acoustofluidic chip for separation of microscale droplets by surface acoustic wave (SAW)-induced acoustic radiation force (ARF); (b) Trajectories of droplets with varying acoustic impedance, acoustic power and droplet streamwise velocity, when they are exposed to acoustic field[48]
Fig.12 Droplet sieving based on droplet migration: (a)—(c) Experimental images in time series showing interfacial migration of equally viscous (λ=0.001564) droplets of size ρ=0.29和ρ=0.45; (d) Size-based sorting of droplets of size ρ=0.29和ρ=0.45; (e) Sorting of droplets of λ1=0.001564 from droplets of λ2=0.0086 of same size ρ=0.34[67]
Fig.16 Principle of pinched flow fractionation: (a) In pinched segment, particles are aligned to one sidewall regardless of their sizes by controlling flow rates from two inlets; (b) Particles are separated according to their sizes by spreading flow profile at boundary of pinched and broadened segments[74]
Fig.18 Schematic view of droplet sorting principle: (a) Hydrodynamic forces on droplets and different droplet behaviors in rail pair depending on volumes; (b) Scheme of multi-stage droplet sorting in cascade channel; (c) Shape recovery using dot rail for repeatable droplet transfer[81]
Fig.19 Principle of size-dependent droplet sorting by selective droplet transfer on dot-rail; (a) Transferring of large droplets; (b) Guiding of small droplets[82]
Fig.21 Principle diagram of droplet screening at asymmetric T-junctions: (a) Microchannel structure diagram; (b) Case of droplets flowing out from outlet 1; (c) Case of droplets flowing out from outlet 2[89]
Fig.22 (a) Schematic of constricted and parallel microchannels; (b) Effect of throat length on droplet sieving; (c) Effect of channel contraction ratios on droplet sieving[91]
1 | Anshori I, Sarwono F Z, Fa'iq M A, et al. From design to performance: 3-D printing-enabled optimization of low-cost droplet microfluidics[J]. IEEE Sensors Journal, 2024, 24(1): 63-70. |
2 | Hwang Y H, Um T, Hong J, et al. Robust production of well-controlled microdroplets in a 3D-printed chimney-shaped milli-fluidic device[J]. Advanced Materials Technologies, 2019, 4(10): 1900457. |
3 | Shum H C, Abate A R, Lee D, et al. Droplet microfluidics for fabrication of non-spherical particles[J]. Macromolecular Rapid Communications, 2010, 31(2): 108-118. |
4 | Jena S K, Bahga S S, Kondaraju S. Prediction of droplet sizes in a T-junction microchannel: effect of dispersed phase inertial forces[J]. Physics of Fluids, 2021, 33(3): 032120. |
5 | Zeng W, Yang S, Liu Y C, et al. Precise monodisperse droplet generation by pressure-driven microfluidic flows[J]. Chemical Engineering Science, 2022, 248: 117206. |
6 | Jafari A, Shamloo A. CFD study of droplet formation in a cross-junction microfluidic device: investigating the impact of outflow channel design and viscosity ratio[J]. Engineering Applications of Computational Fluid Mechanics, 2023, 17(1): 2243091. |
7 | Xie B S, Jiang F, Lin H J, et al. Research on the effect of geometric parameters of a six- way junction microchannel on the formation of a double emulsion droplet[J]. Journal of Applied Fluid Mechanics, 2023, 16(4): 850-864. |
8 | Wang J J, Zhu C Y, Fu T T, et al. Dynamics of droplet generation in a wedge-shaped step-emulsification microchannel[J]. International Journal of Multiphase Flow, 2023, 167: 104530. |
9 | 张志伟, 殷翔宇, 朱春英, 等. 台阶式并行微通道内气泡群自组装行为及其对气泡生成的反馈效应[J]. 力学学报, 2020, 52(2): 420-430. |
Zhang Z W, Yin X Y, Zhu C Y, et al. Self-assembly of bubble swarm in large cavities in step-type parallelized microchannels and its feedback on bubble formation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 420-430. | |
10 | Mi S, Zhu C Y, Ma Y G, et al. Bubble formation in high-viscosity liquids in step-emulsification microdevices[J]. Journal of Industrial and Engineering Chemistry, 2022, 114: 221-232. |
11 | Santana H S, Lopes M G M, Silva J L, et al. Application of microfluidics in process intensification[J]. International Journal of Chemical Reactor Engineering, 2018, 16(12): 20180038. |
12 | Kafeenah H, Jen H H, Chen S H. Microdroplet mass spectrometry: accelerating reaction and application[J]. Electrophoresis, 2022, 43(1/2): 74-81. |
13 | Zheng L Z, Liu X M, Yang G Q, et al. Highly efficient synthesis of cyclic carbonates via deep eutectic solvents from CO2 at the gas-liquid interface of microdroplet under atmospheric pressure condition[J]. Chemical Engineering Science, 2024, 289: 119867. |
14 | Zheng B Y, Wu Y K, Xue L Y, et al. Is reaction acceleration of microdroplet chemistry favorable to controlling the enantioselectivity?[J]. The Journal of Organic Chemistry, 2023, 88(23): 16186-16195. |
15 | Zhang R L, Zhang Z Y, Chen X K, et al. Pyrogenic carbon degradation by galvanic coupling with sprayed seawater microdroplets[J]. Journal of the American Chemical Society, 2024, 146(12): 8528-8535. |
16 | Chen Z K, Kheiri S, Young E W K, et al. Trends in droplet microfluidics: from droplet generation to biomedical applications[J]. Langmuir, 2022, 38(20): 6233-6248. |
17 | Mohajeri M, Eskandari M, Ghazali Z S, et al. Cell encapsulation in alginate-based microgels using droplet microfluidics: a review on gelation methods and applications[J]. Biomedical Physics & Engineering Express, 2022, 8(2): 022001. |
18 | Jiang L, Yang H, Cheng W Q, et al. Droplet microfluidics for CTC-based liquid biopsy: a review[J]. Analyst, 2023, 148(2): 203-221. |
19 | Mou L, Hong H H, Xu X J, et al. Digital hybridization human papillomavirus assay with attomolar sensitivity without amplification[J]. ACS Nano, 2021, 15(8): 13077-13084. |
20 | Trinh T N D, Do H D K, Nam N N, et al. Droplet-based microfluidics: applications in pharmaceuticals[J]. Pharmaceuticals, 2023, 16(7): 937. |
21 | Zhai J, Yi S H, Jia Y W, et al. Cell-based drug screening on microfluidics[J]. TrAC Trends in Analytical Chemistry, 2019, 117: 231-241. |
22 | Liu D, Sun M L, Zhang J W, et al. Single-cell droplet microfluidics for biomedical applications[J]. Analyst, 2022, 147(11): 2294-2316. |
23 | 陈昊, 杨星宇, 扆豪哲, 等. 微液滴强化传质与化学反应的研究进展[J]. 中国科学: 化学, 2024, 54(1): 133-146. |
Chen H, Yang X Y, Yi H Z, et al. Research progress on enhancement of mass transfer and chemical reaction by microdroplets[J]. Scientia Sinica (Chimica), 2024, 54(1): 133-146. | |
24 | Thorsen T, Maerkl S J, Quake S R. Microfluidic large-scale integration[J]. Science, 2002, 298(5593): 580-584. |
25 | Graham E A M. Lab-on-a-chip technology[J]. Forensic Science, Medicine, and Pathology, 2005, 1(3): 221-223. |
26 | Yu H J, Son G, Shim W. Numerical simulation of droplet merging and chemical reaction in a porous medium[J]. International Communications in Heat and Mass Transfer, 2017, 89: 154-164. |
27 | Park Y, Pham T A, Beigie C, et al. Monodisperse micro-oil droplets stabilized by polymerizable phospholipid coatings as potential drug carriers[J]. Langmuir, 2015, 31(36): 9762-9770. |
28 | Lu W C, Chiang B H, Huang D W, et al. Skin permeation of d-limonene-based nanoemulsions as a transdermal carrier prepared by ultrasonic emulsification[J]. Ultrasonics Sonochemistry, 2014, 21(2): 826-832. |
29 | Roth T, Glückstad J. Bio optofluidics cell sorter: cell-BOCS concept and applications[C]//Complex Light and Optical Forces Ⅵ. San Francisco, California, USA: SPIE, 2012:82740J. |
30 | Liu Y, Cui X, Lu R, et al. Digital sort-enabled counting allows absolute electrical quantification of target nucleic acid[J]. ACS Sensors, 2024, 9(5): 2695-2702. |
31 | Link D R, Grasland-Mongrain E, Duri A, et al. Electric control of droplets in microfluidic devices[J]. Angewandte Chemie (International Ed in English), 2006, 45(16): 2556-2560. |
32 | Yao J H, He C H, Wang J X, et al. A novel integrated microfluidic chip for on-demand electrostatic droplet charging and sorting[J]. Bio-Design and Manufacturing, 2024, 7(1): 31-42. |
33 | Isozaki A, Nakagawa Y, Loo M H, et al. Sequentially addressable dielectrophoretic array for high-throughput sorting of large-volume biological compartments[J]. Science Advances, 2020, 6(22): eaba6712. |
34 | Zhang H, Huang C, Li Y W, et al. FIDELITY: a quality control system for droplet microfluidics[J]. Science Advances, 2022, 8(27): eabc9108. |
35 | Hao G Q, Li L, Wu L Y, et al. Electric-field-controlled droplet sorting in a bifurcating channel[J]. Microgravity Science and Technology, 2022, 34(2): 25. |
36 | Franke T, Braunmüller S, Schmid L, et al. Surface acoustic wave actuated cell sorting (SAWACS)[J]. Lab on a Chip, 2010, 10(6): 789-794. |
37 | Gerlt M S, Haidas D, Ratschat A, et al. Manipulation of single cells inside nanoliter water droplets using acoustic forces[J]. Biomicrofluidics, 2020, 14(6): 064112. |
38 | Leong T, Johansson L, Juliano P, et al. Ultrasonic separation of particulate fluids in small and large scale systems: a review[J]. Industrial & Engineering Chemistry Research, 2013, 52(47): 16555-16576. |
39 | Xi H D, Zheng H, Guo W, et al. Active droplet sorting in microfluidics: a review[J]. Lab on a Chip, 2017, 17(5): 751-771. |
40 | Leibacher I, Reichert P, Dual J. Microfluidic droplet handling by bulk acoustic wave (BAW) acoustophoresis[J]. Lab on a Chip, 2015, 15(13): 2896-2905. |
41 | Jakobsson O, Grenvall C, Nordin M, et al. Acoustic actuated fluorescence activated sorting of microparticles[J]. Lab on a Chip, 2014, 14(11): 1943-1950. |
42 | Deshmukh S, Brzozka Z, Laurell T, et al. Acoustic radiation forces at liquid interfaces impact the performance of acoustophoresis[J]. Lab on a Chip, 2014, 14(17): 3394-3400. |
43 | Huang C, Jiang Y Q, Li Y W, et al. Droplet detection and sorting system in microfluidics: a review[J]. Micromachines, 2022, 14(1): 103. |
44 | Li S X, Ding X Y, Guo F, et al. An on-chip, multichannel droplet sorter using standing surface acoustic waves[J]. Analytical Chemistry, 2013, 85(11): 5468-5474. |
45 | Liu G J, He F, Li Y, et al. Effects of two surface acoustic wave sorting chips on particles multi-level sorting[J]. Biomedical Microdevices, 2019, 21(3): 59. |
46 | Liu G J, Shen W H, Li Y, et al. Continuous separation of particles with different densities based on standing surface acoustic waves[J]. Sensors and Actuators A: Physical, 2022, 341: 113589. |
47 | Li P X, Ma Z C, Zhou Y N, et al. Detachable acoustophoretic system for fluorescence-activated sorting at the single-droplet level[J]. Analytical Chemistry, 2019, 91(15): 9970-9977. |
48 | Ali M, Park J. Ultrasonic surface acoustic wave-assisted separation of microscale droplets with varying acoustic impedance[J]. Ultrasonics Sonochemistry, 2023, 93: 106305. |
49 | Banerjee U, Jain S K, Sen A K. Particle encapsulation in aqueous ferrofluid drops and sorting of particle-encapsulating drops from empty drops using a magnetic field[J]. Soft Matter, 2021, 17(24): 6020-6028. |
50 | Chen A, Byvank T, Chang W J, et al. On-chip magnetic separation and encapsulation of cells in droplets[J]. Lab on a Chip, 2013, 13(6): 1172-1181. |
51 | Zhu G P, Wang Q Y, Ma Z K, et al. Droplet manipulation under a magnetic field: a review[J]. Biosensors, 2022, 12(3): 156. |
52 | Al-Hetlani E, Hatt O J, Vojtíšek M, et al. Sorting and manipulation of magnetic droplets in continuous flow[C]//AIP Conference Proceedings, Rostock, Germany: AIP, 2010: 167-175. |
53 | Jo Y, Shen F S, Hahn Y K, et al. Magnetophoretic sorting of single cell-containing microdroplets[J]. Micromachines, 2016, 7(4): 56. |
54 | Kim J, Won J, Song S. Dual-mode on-demand droplet routing in multiple microchannels using a magnetic fluid as carrier phase[J]. Biomicrofluidics, 2014, 8(5): 054105. |
55 | Zhou Y, Yu Z B, Wu M, et al. Single-cell sorting using integrated pneumatic valve droplet microfluidic chip[J]. Talanta, 2023, 253: 124044. |
56 | Lai C W, Lin Y H, Lee G B. A microfluidic chip for formation and collection of emulsion droplets utilizing active pneumatic micro-choppers and micro-switches[J]. Biomedical Microdevices, 2008, 10(5): 749-756. |
57 | Zhang R C, Gao C, Tian L, et al. Dynamic pneumatic rails enabled microdroplet manipulation[J]. Lab on a Chip, 2021, 21(1): 105-112. |
58 | Wakui D, Takahashi S, Sekiguchi T, et al. Multi channel droplet sorting device with horizontal pneumatic actuation using single layer PDMS flexible parallel walls[C]//2010 IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS). Hong Kong, China: IEEE, 2010: 144-147. |
59 | Zhou J, Papautsky I. Fundamentals of inertial focusing in microchannels[J]. Lab on a Chip, 2013, 13(6): 1121-1132. |
60 | Di Carlo D, Irimia D, Tompkins R G, et al. Continuous inertial focusing, ordering, and separation of particles in microchannels[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(48): 18892-18897. |
61 | Hur S C, Henderson-MacLennan N K, McCabe E R B, et al. Deformability-based cell classification and enrichment using inertial microfluidics[J]. Lab on a Chip, 2011, 11(5): 912-920. |
62 | Li M, van Zee M, Goda K, et al. Size-based sorting of hydrogel droplets using inertial microfluidics[J]. Lab on a Chip, 2018, 18(17): 2575-2582. |
63 | Hatch A C, Patel A, Beer N R, et al. Passive droplet sorting using viscoelastic flow focusing[J]. Lab on a Chip, 2013, 13(7): 1308-1315. |
64 | Zhang T L, Liu H R, Okano K, et al. Shape-based separation of drug-treated Escherichia coli using viscoelastic microfluidics[J]. Lab on a Chip, 2022, 22(15): 2801-2809. |
65 | Deng N N, Wang W, Ju X J, et al. Spontaneous transfer of droplets across microfluidic laminar interfaces[J]. Lab on a Chip, 2016, 16(22): 4326-4332. |
66 | Yi H Z, Fu T T, Ma D F, et al. Spontaneous transfer of droplets across a microfluidic liquid-liquid interface[J]. Langmuir, 2024, 40(10): 5508-5517. |
67 | Jayaprakash K S, Banerjee U, Sen A K. Dynamics of aqueous droplets at the interface of coflowing immiscible oils in a microchannel[J]. Langmuir, 2016, 32(8): 2136-2143. |
68 | Xue C D, Chen X D, Liu C, et al. Lateral migration of dual droplet trains in a double spiral microchannel[J]. Science China Physics, Mechanics & Astronomy, 2016, 59(7): 674711. |
69 | Huang L R, Cox E C, Austin R H, et al. Continuous particle separation through deterministic lateral displacement[J]. Science, 2004, 304(5673): 987-990. |
70 | Hochstetter A, Vernekar R, Austin R H, et al. Deterministic lateral displacement: challenges and perspectives[J]. ACS Nano, 2020, 14(9): 10784-10795. |
71 | Joensson H N, Uhlén M, Svahn H A. Droplet size based separation by deterministic lateral displacement—separating droplets by cell-induced shrinking[J]. Lab on a Chip, 2011, 11(7): 1305-1310. |
72 | Jing T Y, Ramji R, Warkiani M E, et al. Jetting microfluidics with size-sorting capability for single-cell protease detection[J]. Biosensors and Bioelectronics, 2015, 66: 19-23. |
73 | Tottori N, Hatsuzawa T, Nisisako T. Separation of main and satellite droplets in a deterministic lateral displacement microfluidic device[J]. RSC Advances, 2017, 7(56): 35516-35524. |
74 | Yamada M, Nakashima M, Seki M. Pinched flow fractionation: continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel[J]. Analytical Chemistry, 2004, 76(18): 5465-5471. |
75 | Tenje M, Fornell A, Ohlin M, et al. Particle manipulation methods in droplet microfluidics[J]. Analytical Chemistry, 2018, 90(3): 1434-1443. |
76 | Maenaka H, Yamada M, Yasuda M, et al. Continuous and size-dependent sorting of emulsion droplets using hydrodynamics in pinched microchannels[J]. Langmuir, 2008, 24(8): 4405-4410. |
77 | Liu X, Ma D D, Yuan Y P, et al. High accuracy size-based droplet separation with pinched flow fractionation[J]. Applied Physics Express, 2023, 16(11): 116502. |
78 | Harada Y, Yoon D H, Sekiguchi T, et al. Size-oriented passive droplet sorting by using surface free energy with micro guide groove[C]//2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS). Paris, France: IEEE, 2012: 1105-1108. |
79 | Yoon D H, Numakunai S, Nakahara A, et al. Hydrodynamic on-rail droplet pass filter for fully passive sorting of droplet-phase samples[J]. RSC Advances, 2014, 4(71): 37721-37725. |
80 | Numakunai S, Jamsaid A, Yoon D H, et al. Multiple size-oriented passive droplet sorting device and basic approach for digital chemical synthesis[C]//2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS). San Francisco, CA, USA: IEEE, 2014: 92-95. |
81 | Yoon D H, Xie Z, Tanaka D, et al. A high-resolution passive droplet-phase sample sorter using multi-stage droplet transfer[J]. RSC Advances, 2017, 7(58): 36750-36754. |
82 | Yoon D, Tanaka D, Sekiguchi T, et al. Size-dependent and property-independent passive microdroplet sorting by droplet transfer on dot rails[J]. Micromachines, 2018, 9(10): 513. |
83 | Movafaghi S, Wang W, Metzger A, et al. Tunable superomniphobic surfaces for sorting droplets by surface tension[J]. Lab on a Chip, 2016, 16(17): 3204-3209. |
84 | Rashid Z, Coşkun U C, Morova Y, et al. Guiding of emulsion droplets in microfluidic chips along shallow tracks defined by laser ablation[J]. Microfluidics and Nanofluidics, 2017, 21(10): 160. |
85 | Horvath D G, Braza S, Moore T, et al. Sorting by interfacial tension (SIFT): label-free enzyme sorting using droplet microfluidics[J]. Analytica Chimica Acta, 2019, 1089: 108-114. |
86 | Jiang H, Zhu C Y, Fu T T, et al. Droplet separation and sieving mechanism by grooved microchannel[J]. Separation and Purification Technology, 2023, 309: 123124. |
87 | Glawdel T, Elbuken C, Ren C. Passive droplet trafficking at microfluidic junctions under geometric and flow asymmetries[J]. Lab on a Chip, 2011, 11(22): 3774-3784. |
88 | Kadivar E, Herminghaus S, Brinkmann M. Droplet sorting in a loop of flat microfluidic channels[J]. Journal of Physics-Condensed Matter, 2013, 25(28): 285102. |
89 | Yang H, Knowles T P J. Hydrodynamics of droplet sorting in asymmetric acute junctions[J]. Micromachines, 2022, 13(10): 1640. |
90 | Chaghagolani H O, Kadivar E. Numerical study of droplet sorting in an asymmetric Y-junction microfluidic by BEM and LS method[J]. Microfluidics and Nanofluidics, 2023, 27(2): 14. |
91 | Bhattacharjee D, Chakraborty S, Atta A. Passive droplet sorting engendered by emulsion flow in constricted and parallel microchannels[J]. Chemical Engineering and Processing - Process Intensification, 2022, 181: 109126. |
[1] | Yong YANG, Zixuan ZU, Yukun LI, Dongliang WANG, Zongliang FAN, Huairong ZHOU. Numerical simulation of CO2 absorption by alkali liquor in T-junction cylindrical microchannels [J]. CIESC Journal, 2024, 75(S1): 135-142. |
[2] | Yushuang LI, Xincheng WANG, Boyao WEN, Zhengyuan LUO, Bofeng BAI. Two-phase flow of emulsion flooding and its influencing factors in porous media [J]. CIESC Journal, 2024, 75(S1): 56-66. |
[3] | Lü LIU, Jieru LIU, Liangliang FAN, Liang ZHAO. Study on passive microfluidic method for particle separation based on laminar effect [J]. CIESC Journal, 2024, 75(S1): 67-75. |
[4] | Chaowei CHEN, Yang LIU, Wenjing DU, Jinbo LI, Dakuo SHI, Gongming XIN. Flow and heat transfer characteristics of micro ribs channel with local hot spots [J]. CIESC Journal, 2024, 75(9): 3113-3121. |
[5] | Juhui CHEN, Tong SU, Dan LI, Liwei CHEN, Wensheng LYU, Fanqi MENG. Study on the heat transfer characteristics of microchannels under the action of fin-shaped spoilers [J]. CIESC Journal, 2024, 75(9): 3122-3132. |
[6] | Jiuzhe QU, Peng YANG, Xufei YANG, Wei ZHANG, Bo YU, Dongliang SUN, Xiaodong WANG. Experimental study on flow boiling in silicon-based microchannels with micropillar cluster arrays [J]. CIESC Journal, 2024, 75(8): 2840-2851. |
[7] | Jialei CAO, Liyan SUN, Dewang ZENG, Fan YIN, Zixiang GAO, Rui XIAO. Numerical simulation of chemical looping hydrogen generation with dual fluidized bed reactors [J]. CIESC Journal, 2024, 75(8): 2865-2874. |
[8] | Jiaqi DING, Haitao LIU, Pu ZHAO, Xiangning ZHU, Xiaofang WANG, Rong XIE. Study on intelligent rolling prediction of the multiphase flows in coal-supercritical water fluidized bed reactor for hydrogen production [J]. CIESC Journal, 2024, 75(8): 2886-2896. |
[9] | Hu JIN, Fan YANG, Mengyao DAI. The motion process of a droplet on a circular cylinder based on the lattice Boltzmann method [J]. CIESC Journal, 2024, 75(8): 2897-2908. |
[10] | Lei ZUO, Junfeng WANG, Jian GAO, Daorui WANG. Electric field-regulating combustion behavior of biodiesel droplet [J]. CIESC Journal, 2024, 75(8): 2983-2990. |
[11] | Banghan WU, Dingbiao LIN, Haifeng LU, Xiaolei GUO, Haifeng LIU. Pipe pressure drop and transfer bottle conveying characteristics in vertical pipe pneumatic logistics transmission system [J]. CIESC Journal, 2024, 75(7): 2465-2473. |
[12] | Lichang FANG, Zilong LI, Bo CHEN, Zheng SU, Lisi JIA, Zhibin WANG, Ying CHEN. Study on cooling characteristics of chip array based on microencapsulated phase change material slurry [J]. CIESC Journal, 2024, 75(7): 2455-2464. |
[13] | Kehao DONG, Jingzhi ZHOU, Feng ZHOU, Haijia CHEN, Xiulan HUAI, Dong LI. Experiment of gas flow pressure drop under complex boundary conditions in ultra-thin space [J]. CIESC Journal, 2024, 75(7): 2505-2521. |
[14] | He ZHAO, Yingjie FEI, Chunying ZHU, Taotao FU, Youguang MA. Deformation and breakup behavior of nanoparticle-stabilized bubbles in high-viscosity systems [J]. CIESC Journal, 2024, 75(6): 2180-2189. |
[15] | Juan LI, Yaowen CAO, Zhangyu ZHU, Lei SHI, Jia LI. Numerical study and structural optimization of microchannel flow and heat transfer characteristics of bionic homocercal fin microchannels [J]. CIESC Journal, 2024, 75(5): 1802-1815. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 470
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 121
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||