CIESC Journal ›› 2024, Vol. 75 ›› Issue (11): 4333-4347.DOI: 10.11949/0438-1157.20240647
• Process system engineering • Previous Articles Next Articles
Gen LIU(), Zhongshun SUN, Bo ZHANG, Rongjiang ZHANG, Zhiqiang WU, Bolun YANG(
)
Received:
2024-06-10
Revised:
2024-09-18
Online:
2024-12-26
Published:
2024-11-25
Contact:
Bolun YANG
刘根(), 孙仲顺, 张博, 张榕江, 吴志强, 杨伯伦(
)
通讯作者:
杨伯伦
作者简介:
刘根(1997-), 男,博士研究生,Gen626@stu.xjtu.edu.cn
基金资助:
CLC Number:
Gen LIU, Zhongshun SUN, Bo ZHANG, Rongjiang ZHANG, Zhiqiang WU, Bolun YANG. Establishment of machine learning-driven biomass pyrolysis model and optimization of volatiles chemical looping reforming hydrogen production process[J]. CIESC Journal, 2024, 75(11): 4333-4347.
刘根, 孙仲顺, 张博, 张榕江, 吴志强, 杨伯伦. 机器学习驱动的生物质热解模型建立及挥发分化学链重整制氢工艺优化[J]. 化工学报, 2024, 75(11): 4333-4347.
输入变量 | 单位 | ||
---|---|---|---|
原料性质 | 工业 分析① | 灰分(Ash) | %(质量) |
挥发分(V) | %(质量) | ||
固定碳(FC) | %(质量) | ||
元素 分析① | 碳(C) | %(质量) | |
氢(H) | %(质量) | ||
氧(O) | %(质量) | ||
氮(N) | %(质量) | ||
组成 分析 | 纤维素(Cel) | %(质量) | |
半纤维素(Hem) | %(质量) | ||
木质素(Lig) | %(质量) | ||
热解操作条件 | 生物质粒径(PS) | μm | |
热解温度(T) | ℃ | ||
进料速度(F) | kg/h | ||
载气流量(G) | m³/h |
Table 1 Input variables and output variables
输入变量 | 单位 | ||
---|---|---|---|
原料性质 | 工业 分析① | 灰分(Ash) | %(质量) |
挥发分(V) | %(质量) | ||
固定碳(FC) | %(质量) | ||
元素 分析① | 碳(C) | %(质量) | |
氢(H) | %(质量) | ||
氧(O) | %(质量) | ||
氮(N) | %(质量) | ||
组成 分析 | 纤维素(Cel) | %(质量) | |
半纤维素(Hem) | %(质量) | ||
木质素(Lig) | %(质量) | ||
热解操作条件 | 生物质粒径(PS) | μm | |
热解温度(T) | ℃ | ||
进料速度(F) | kg/h | ||
载气流量(G) | m³/h |
单元 | 关键设备参数 | 模拟方法 |
---|---|---|
重整反应器 | 流化床, 1 atm, 700~850℃ | RGibbs block |
一级再生反应器 | 流化床, 1 atm, 绝热运行 | RCSTR block |
二级再生反应器 | 流化床, 1 atm, 950℃ | RStoic block |
MEA CO2 捕集系统 | CO2 捕集率:90%, 热量需求: 3538 kJ/kg | Sep block |
氢气变压吸附分离系统 | H2分离效率:85%, H2纯度:99.99% (mol) | Sep block |
Table 2 Simulation methods and operational parameters for process units
单元 | 关键设备参数 | 模拟方法 |
---|---|---|
重整反应器 | 流化床, 1 atm, 700~850℃ | RGibbs block |
一级再生反应器 | 流化床, 1 atm, 绝热运行 | RCSTR block |
二级再生反应器 | 流化床, 1 atm, 950℃ | RStoic block |
MEA CO2 捕集系统 | CO2 捕集率:90%, 热量需求: 3538 kJ/kg | Sep block |
氢气变压吸附分离系统 | H2分离效率:85%, H2纯度:99.99% (mol) | Sep block |
原料 | 元素分析①/%(质量) | 工业分析①/%(质量) | 组成分析/%(质量) | 文献 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
C | H | N | O | Ash | V | FC | Cel | Hem | Lig | ||
小麦秸秆 | 41.03 | 6.02 | 0.14 | 51.38 | 1.38 | 83.30 | 15.32 | 34.60 | 29.30 | 21.30 | [ |
玉米秸秆 | 43.56 | 5.85 | 1.18 | 45.99 | 7.13 | 75.59 | 17.28 | 33.46 | 23.77 | 26.19 | [ |
榕树 | 44.40 | 7.21 | 0.91 | 47.48 | 10.90 | 85.13 | 3.97 | 31.01 | 15.69 | 24.92 | [ |
松木 | 48.22 | 6.30 | 0.14 | 44.45 | 1.59 | 87.50 | 10.91 | 39.00 | 34.00 | 12.00 | [ |
Table 3 Elemental analysis, industrial analysis, compositional analysis data for different biomasses
原料 | 元素分析①/%(质量) | 工业分析①/%(质量) | 组成分析/%(质量) | 文献 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
C | H | N | O | Ash | V | FC | Cel | Hem | Lig | ||
小麦秸秆 | 41.03 | 6.02 | 0.14 | 51.38 | 1.38 | 83.30 | 15.32 | 34.60 | 29.30 | 21.30 | [ |
玉米秸秆 | 43.56 | 5.85 | 1.18 | 45.99 | 7.13 | 75.59 | 17.28 | 33.46 | 23.77 | 26.19 | [ |
榕树 | 44.40 | 7.21 | 0.91 | 47.48 | 10.90 | 85.13 | 3.97 | 31.01 | 15.69 | 24.92 | [ |
松木 | 48.22 | 6.30 | 0.14 | 44.45 | 1.59 | 87.50 | 10.91 | 39.00 | 34.00 | 12.00 | [ |
原料 | 热解条件 | |||
---|---|---|---|---|
生物质 粒径/μm | 热解 温度/oC | 进料速度/(kg/h) | 载气流量/(m³/h) | |
小麦秸秆 | 232.67 | 594.87 | 5.30 | 0.06 |
玉米秸秆 | 8060.52 | 611.00 | 5.30 | 0.06 |
榕树 | 10000.00 | 277.00 | 1.15 | 13.00 |
松木 | 2036.94 | 611.00 | 5.30 | 0.06 |
Table 4 Optimization results of different biomass pyrolysis conditions
原料 | 热解条件 | |||
---|---|---|---|---|
生物质 粒径/μm | 热解 温度/oC | 进料速度/(kg/h) | 载气流量/(m³/h) | |
小麦秸秆 | 232.67 | 594.87 | 5.30 | 0.06 |
玉米秸秆 | 8060.52 | 611.00 | 5.30 | 0.06 |
榕树 | 10000.00 | 277.00 | 1.15 | 13.00 |
松木 | 2036.94 | 611.00 | 5.30 | 0.06 |
原料 | Char/%(质量) | Oil/%(质量) | Gas/%(质量) | HHV/(MJ/kg) |
---|---|---|---|---|
小麦秸秆 | 35.49 | 48.62 | 15.87 | 27.34 |
玉米秸秆 | 26.19 | 42.38 | 31.48 | 29.32 |
榕树 | 21.33 | 58.23 | 20.39 | 26.65 |
松木 | 33.89 | 29.35 | 36.83 | 25.58 |
原料 | COil/%(质量) | HOil/%(质量) | NOil/%(质量) | OOil/%(质量) |
小麦秸秆 | 58.34 | 6.31 | 0.41 | 35.19 |
玉米秸秆 | 64.45 | 6.85 | 1.12 | 27.63 |
榕树 | 61.53 | 7.08 | 1.07 | 30.24 |
松木 | 64.66 | 6.46 | 0.69 | 29.46 |
原料 | CO/%(质量) | CO2/%(质量) | CH4/%(质量) | H2/%(质量) |
小麦秸秆 | 53.88 | 34.74 | 9.19 | 2.12 |
玉米秸秆 | 41.84 | 48.41 | 7.91 | 1.82 |
榕树 | 29.11 | 67.58 | 2.97 | 0.47 |
松木 | 63.55 | 17.99 | 13.74 | 3.22 |
Table 5 Prediction of product properties under optimal pyrolysis conditions
原料 | Char/%(质量) | Oil/%(质量) | Gas/%(质量) | HHV/(MJ/kg) |
---|---|---|---|---|
小麦秸秆 | 35.49 | 48.62 | 15.87 | 27.34 |
玉米秸秆 | 26.19 | 42.38 | 31.48 | 29.32 |
榕树 | 21.33 | 58.23 | 20.39 | 26.65 |
松木 | 33.89 | 29.35 | 36.83 | 25.58 |
原料 | COil/%(质量) | HOil/%(质量) | NOil/%(质量) | OOil/%(质量) |
小麦秸秆 | 58.34 | 6.31 | 0.41 | 35.19 |
玉米秸秆 | 64.45 | 6.85 | 1.12 | 27.63 |
榕树 | 61.53 | 7.08 | 1.07 | 30.24 |
松木 | 64.66 | 6.46 | 0.69 | 29.46 |
原料 | CO/%(质量) | CO2/%(质量) | CH4/%(质量) | H2/%(质量) |
小麦秸秆 | 53.88 | 34.74 | 9.19 | 2.12 |
玉米秸秆 | 41.84 | 48.41 | 7.91 | 1.82 |
榕树 | 29.11 | 67.58 | 2.97 | 0.47 |
松木 | 63.55 | 17.99 | 13.74 | 3.22 |
项目 | 小麦秸秆 | 玉米秸秆 | 榕树 | 松木 |
---|---|---|---|---|
关键工艺参数 | ||||
蒸汽/生物质质量比 | 0.88 | 0.71 | 0.83 | 0.74 |
空气/生物质质量比 | 1.76 | 1.31 | 1.06 | 1.63 |
载氧体循环速率/(kg/h) | 4691.00 | 3540.78 | 2878.40 | 4403.42 |
CO2气速/(kg/h) | 1369.09 | 1216.05 | 1326.29 | 1702.45 |
反应器运行温度/oC | ||||
重整反应器 | 700.00 | 700.00 | 700.00 | 700.00 |
一级再生反应器 | 689.04 | 692.46 | 688.22 | 690.69 |
二级再生反应器 | 950.00 | 950.00 | 950.00 | 950.00 |
产品性质 | ||||
纯H2流量 | ||||
质量流量/(kg/h) | 31.73 | 29.46 | 31.22 | 27.60 |
摩尔流量/(kmol/h) | 63.96 | 59.39 | 62.94 | 55.64 |
合成气组成/%(mol) | ||||
H2 | 0.56 | 0.58 | 0.60 | 0.53 |
CO | 0.32 | 0.31 | 0.28 | 0.33 |
CH4 | <0.01 | <0.01 | <0.01 | <0.01 |
CO2 | 0.12 | 0.11 | 0.12 | 0.14 |
系统性能 | ||||
氢气产量/(m3/kg) | 0.60 | 0.56 | 0.59 | 0.53 |
能量转化效率/% | 89.54 | 73.90 | 66.31 | 63.04 |
净CO2排放量/(kg/m3) | -1.74 | -1.27 | -1.27 | -1.42 |
Table 6 Prediction of product properties under optimal pyrolysis conditions
项目 | 小麦秸秆 | 玉米秸秆 | 榕树 | 松木 |
---|---|---|---|---|
关键工艺参数 | ||||
蒸汽/生物质质量比 | 0.88 | 0.71 | 0.83 | 0.74 |
空气/生物质质量比 | 1.76 | 1.31 | 1.06 | 1.63 |
载氧体循环速率/(kg/h) | 4691.00 | 3540.78 | 2878.40 | 4403.42 |
CO2气速/(kg/h) | 1369.09 | 1216.05 | 1326.29 | 1702.45 |
反应器运行温度/oC | ||||
重整反应器 | 700.00 | 700.00 | 700.00 | 700.00 |
一级再生反应器 | 689.04 | 692.46 | 688.22 | 690.69 |
二级再生反应器 | 950.00 | 950.00 | 950.00 | 950.00 |
产品性质 | ||||
纯H2流量 | ||||
质量流量/(kg/h) | 31.73 | 29.46 | 31.22 | 27.60 |
摩尔流量/(kmol/h) | 63.96 | 59.39 | 62.94 | 55.64 |
合成气组成/%(mol) | ||||
H2 | 0.56 | 0.58 | 0.60 | 0.53 |
CO | 0.32 | 0.31 | 0.28 | 0.33 |
CH4 | <0.01 | <0.01 | <0.01 | <0.01 |
CO2 | 0.12 | 0.11 | 0.12 | 0.14 |
系统性能 | ||||
氢气产量/(m3/kg) | 0.60 | 0.56 | 0.59 | 0.53 |
能量转化效率/% | 89.54 | 73.90 | 66.31 | 63.04 |
净CO2排放量/(kg/m3) | -1.74 | -1.27 | -1.27 | -1.42 |
1 | Osman A I, Mehta N, Elgarahy A M, et al. Hydrogen production, storage, utilisation and environmental impacts: a review[J]. Environmental Chemistry Letters, 2022, 20(1): 153-188. |
2 | Kuo P C, Chen J R, Wu W, et al. Hydrogen production from biomass using iron-based chemical looping technology: validation, optimization, and efficiency[J]. Chemical Engineering Journal, 2018, 337: 405-415. |
3 | 张榕江, 张博, 刘根, 等. 化学链制化学品工艺及循环材料研究进展[J]. 化工学报, 2023, 74(10): 3979-3994. |
Zhang R J, Zhang B, Liu G, et al. Progress in chemical looping process for chemical production and looping materials research[J]. CIESC Journal, 2023, 74(10): 3979-3994. | |
4 | Waldheim L, Nilsson T. Heating value of gases from biomass gasification[R]. Report prepared for: IEA bioenergy agreement, Task 20-thermal gasification of biomass, 2001. |
5 | Zhang B, Li Y C, Yang B L, et al. Controlling the reaction microenvironments through an embedding strategy to strengthen the chemical looping reforming of methane based on decoupling process[J]. Chemical Engineering Journal, 2022, 446: 137061. |
6 | Zhang B, Sun Z S, Li Y C, et al. Chemical looping reforming characteristics of methane and toluene from biomass pyrolysis volatiles based on decoupling strategy: embedding NiFe2O4 in SBA-15 as an oxygen carrier[J]. Chemical Engineering Journal, 2023, 466: 143228. |
7 | Liu G, Zhang R J, Sun Z S, et al. Carbon-negative syngas production: a comprehensive assessment of biomass pyrolysis coupling chemical looping reforming[J]. AIChE Journal, 2023, 69(12): e18254. |
8 | Zhang R J, Liu G, Huo C B, et al. Tailoring catalytic and oxygen release capability in LaFe1- x Ni x O3 to intensify chemical looping reactions at medium temperatures[J]. ACS Catalysis, 2024, 14(10): 7771-7787. |
9 | Liu G, Zhang R J, Zhang B, et al. Performance evaluation of torrefaction coupled with a chemical looping gasification process under autothermal conditions: flexible syngas production from biomass[J]. Energy & Fuels, 2023, 37(1): 424-438. |
10 | Palma C F. Modelling of tar formation and evolution for biomass gasification: a review[J]. Applied Energy, 2013, 111: 129-141. |
11 | Sharma A, Pareek V, Zhang D K. Biomass pyrolysis—a review of modelling, process parameters and catalytic studies[J]. Renewable and Sustainable Energy Reviews, 2015, 50: 1081-1096. |
12 | Li P, Shi X P, Wang X H, et al. Bio-oil from biomass fast pyrolysis: yields, related properties and energy consumption analysis of the pyrolysis system[J]. Journal of Cleaner Production, 2021, 328: 129613. |
13 | Hameed S, Sharma A, Pareek V, et al. A review on biomass pyrolysis models: kinetic, network and mechanistic models[J]. Biomass and Bioenergy, 2019, 123: 104-122. |
14 | Leng E W, He B, Chen J W, et al. Prediction of three-phase product distribution and bio-oil heating value of biomass fast pyrolysis based on machine learning[J]. Energy, 2021, 236: 121401. |
15 | Chong J W, Thangalazhy-Gopakumar S, Tan R R, et al. Estimation of fast pyrolysis bio-oil properties from feedstock characteristics using rough-set-based machine learning[J]. International Journal of Energy Research, 2022, 46(13): 19159-19176. |
16 | Ali N, Saleem M, Shahzad K, et al. Bio-oil production from fast pyrolysis of cotton stalk in fluidized bed reactor[J]. Arabian Journal for Science and Engineering, 2015, 40(11): 3019-3027. |
17 | Jung S H, Kang B S, Kim J S. Production of bio-oil from rice straw and bamboo sawdust under various reaction conditions in a fast pyrolysis plant equipped with a fluidized bed and a char separation system[J]. Journal of Analytical and Applied Pyrolysis, 2008, 82(2): 240-247. |
18 | Yang S Y, Wu C Y, Chen K H. The physical characteristics of bio-oil from fast pyrolysis of rice straw[J]. Advanced Materials Research, 2011, 328: 881-886. |
19 | Yang S I, Wu M S, Wu C Y. Application of biomass fast pyrolysis (part Ⅰ): Pyrolysis characteristics and products[J]. Energy, 2014, 66: 162-171. |
20 | Duman G, Okutucu C, Ucar S, et al. The slow and fast pyrolysis of cherry seed[J]. Bioresource Technology, 2011, 102(2): 1869-1878. |
21 | Kim S J, Jung S H, Kim J S. Fast pyrolysis of palm kernel shells: influence of operation parameters on the bio-oil yield and the yield of phenol and phenolic compounds[J]. Bioresource Technology, 2010, 101(23): 9294-9300. |
22 | Sulaiman F, Abdullah N. Optimum conditions for maximising pyrolysis liquids of oil palm empty fruit bunches[J]. Energy, 2011, 36(5): 2352-2359. |
23 | Heidari A, Stahl R, Younesi H, et al. Effect of process conditions on product yield and composition of fast pyrolysis of Eucalyptus grandis in fluidized bed reactor[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(4): 2594-2602. |
24 | Koo W M, Jung S H, Kim J S. Production of bio-oil with low contents of copper and chlorine by fast pyrolysis of alkaline copper quaternary-treated wood in a fluidized bed reactor[J]. Energy, 2014, 68: 555-561. |
25 | Montoya J I, Valdés C, Chejne F, et al. Bio-oil production from Colombian bagasse by fast pyrolysis in a fluidized bed: an experimental study[J]. Journal of Analytical and Applied Pyrolysis, 2015, 112: 379-387. |
26 | Ali N, Saleem M, Shahzad K, et al. Effect of operating parameters on production of bio-oil from fast pyrolysis of maize stalk in bubbling fluidized bed reactor[J]. Polish Journal of Chemical Technology, 2016, 18(3): 88-96. |
27 | Salehi E, Abedi J, Harding T. Bio-oil from sawdust: effect of operating parameters on the yield and quality of pyrolysis products[J]. Energy & Fuels, 2011, 25(9): 4145-4154. |
28 | Kang B S, Lee K H, Park H J, et al. Fast pyrolysis of radiata pine in a bench scale plant with a fluidized bed: influence of a char separation system and reaction conditions on the production of bio-oil[J]. Journal of Analytical and Applied Pyrolysis, 2006, 76(1/2): 32-37. |
29 | Pattiya A, Suttibak S. Production of bio-oil via fast pyrolysis of agricultural residues from cassava plantations in a fluidised-bed reactor with a hot vapour filtration unit[J]. Journal of Analytical and Applied Pyrolysis, 2012, 95: 227-235. |
30 | Park H J, Park Y K, Kim J S. Influence of reaction conditions and the char separation system on the production of bio-oil from radiata pine sawdust by fast pyrolysis[J]. Fuel Processing Technology, 2008, 89(8): 797-802. |
31 | Park H J, Park Y K, Dong J I, et al. Pyrolysis characteristics of oriental white oak: kinetic study and fast pyrolysis in a fluidized bed with an improved reaction system[J]. Fuel Processing Technology, 2009, 90(2): 186-195. |
32 | Agblevor F A, Besler S, Wiselogel A E. Fast pyrolysis of stored biomass feedstocks[J]. Energy & Fuels, 1995, 9(4): 635-640. |
33 | Fahmi R, Bridgwater A V, Donnison I, et al. The effect of lignin and inorganic species in biomass on pyrolysis oil yields, quality and stability[J]. Fuel, 2008, 87(7): 1230-1240. |
34 | Lee K H, Kang B S, Park Y K, et al. Influence of reaction temperature, pretreatment, and a char removal system on the production of bio-oil from rice straw by fast pyrolysis, using a fluidized bed[J]. Energy & Fuels, 2005, 19(5): 2179-2184. |
35 | Eom I Y, Kim J Y, Lee S M, et al. Comparison of pyrolytic products produced from inorganic-rich and demineralized rice straw (Oryza sativa L.) by fluidized bed pyrolyzer for future biorefinery approach[J]. Bioresource Technology, 2013, 128: 664-672. |
36 | Kim K H, Bai X L, Rover M, et al. The effect of low-concentration oxygen in sweep gas during pyrolysis of red oak using a fluidized bed reactor[J]. Fuel, 2014, 124: 49-56. |
37 | Mullen C A, Boateng A A, Goldberg N M, et al. Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis[J]. Biomass and Bioenergy, 2010, 34(1): 67-74. |
38 | Bok J P, Choi H S, Choi Y S, et al. Fast pyrolysis of coffee grounds: characteristics of product yields and biocrude oil quality[J]. Energy, 2012, 47(1): 17-24. |
39 | Kim J Y, Oh S, Hwang H, et al. Assessment of miscanthus biomass (Miscanthus sacchariflorus) for conversion and utilization of bio-oil by fluidized bed type fast pyrolysis[J]. Energy, 2014, 76: 284-291. |
40 | Bok J P, Choi H S, Choi J W, et al. Fast pyrolysis of Miscanthus sinensis in fluidized bed reactors: characteristics of product yields and biocrude oil quality[J]. Energy, 2013, 60: 44-52. |
41 | Park J W, Heo J, Ly H V, et al. Fast pyrolysis of acid-washed oil palm empty fruit bunch for bio-oil production in a bubbling fluidized-bed reactor[J]. Energy, 2019, 179: 517-527. |
42 | Ly H V, Lim D H, Sim J W, et al. Catalytic pyrolysis of tulip tree (Liriodendron) in bubbling fluidized-bed reactor for upgrading bio-oil using dolomite catalyst[J]. Energy, 2018, 162: 564-575. |
43 | Salehi E, Abedi J, Harding T G, et al. Bio-oil from sawdust: design, operation, and performance of a bench-scale fluidized-bed pyrolysis plant[J]. Energy & Fuels, 2013, 27(6): 3332-3340. |
44 | 王茂先, 孙启典, 付哲, 等. 分子水平动力学模型和机器学习方法相结合研究废弃塑料热解[J]. 化工学报, 2024, 75(11): 4320-4332. |
Wang M X, Sun Q D, Fu Z, et al. Understanding pyrolysis process of polyethylene by combined method of molecular-level kinetic model with machine learning[J]. CIESC Journal, 2024, 75(11): 4320-4332. | |
45 | Maurer A, Pontil M, Romera-Paredes B. The benefit of multitask representation learning[J]. Journal of Machine Learning Research, 2016, 17(81): 1-32. |
46 | 黄勇, 王宁波, 刘巧霞, 等. 热解条件对西湾煤与秸秆流化床加压共热解的影响[J]. 煤炭转化, 2022, 45(1): 11-19. |
Huang Y, Wang N B, Liu Q X, et al. Effects of pyrolysis conditions on pressurized co-pyrolysis of xiwan coal and wheat straw in fluidized bed[J]. Coal Conversion, 2022, 45(1): 11-19. | |
47 | Chireshe F, Collard F X, Görgens J F. Production of low oxygen bio-oil via catalytic pyrolysis of forest residues in a kilogram-scale rotary kiln reactor[J]. Journal of Cleaner Production, 2020, 260: 120987. |
48 | Abhijeet P, Swagathnath G, Rangabhashiyam S, et al. Prediction of pyrolytic product composition and yield for various grass biomass feedstocks[J]. Biomass Conversion and Biorefinery, 2020, 10(3): 663-674. |
49 | Tsekos C, Tandurella S, Jong W D. Estimation of lignocellulosic biomass pyrolysis product yields using artificial neural networks[J]. Journal of Analytical and Applied Pyrolysis, 2021, 157: 105180. |
50 | Naik S, Goud V V, Rout P K, et al. Characterization of Canadian biomass for alternative renewable biofuel[J]. Renewable Energy, 2010, 35(8): 1624-1631. |
51 | Lu W, Ronghou L, Chen S, et al. Classification and comparison of physical and chemical properties of corn stalk from three regions in China[J]. International Journal of Agricultural and Biological Engineering, 2014, 7(6): 98-106. |
52 | Pérez-Arévalo J J, Velázquez-Martí B. Evaluation of pruning residues of Ficus benjamina as a primary biofuel material[J]. Biomass and Bioenergy, 2018, 108: 217-223. |
53 | Hu J J, Li C, Guo Q H, et al. Syngas production by chemical-looping gasification of wheat straw with Fe-based oxygen carrier[J]. Bioresource Technology, 2018, 263: 273-279. |
54 | Zhao Z G, Kong W G, Wu S, et al. High quality syngas production from catalytic steam gasification of biomass with calcium-rich construction waste[J]. Journal of the Energy Institute, 2023, 111: 101433. |
55 | Kumar P, Subbarao P M V, Kala L D, et al. Experimental assessment of producer gas generation using agricultural and forestry residues in a fixed bed downdraft gasifier[J]. Chemical Engineering Journal Advances, 2023, 13: 100431. |
56 | Song Y H, Tian Y, Zhou X, et al. Simulation of air-steam gasification of pine sawdust in an updraft gasification system for production of hydrogen-rich producer gas[J]. Energy, 2021, 226: 120380. |
[1] | Liming PU, Gui WANG, Chunlai ZHENG, Ke WANG, Tenglong XIANG, Zhihong WANG. Optimization and analysis of natural gas liquefaction process in mixed fluid cascade [J]. CIESC Journal, 2024, 75(S1): 267-275. |
[2] | Xuehong WU, Xin WEI, Jiawen HOU, Cai LYU, Yong LIU, He LIU, Zhijuan CHANG. Preparation of carbon nanotubes by pyrolysis method and their application in heat dissipation coatings [J]. CIESC Journal, 2024, 75(9): 3360-3368. |
[3] | Junfeng WANG, Junjie ZHANG, Wei ZHANG, Jiale WANG, Shuyan SHUANG, Yadong ZHANG. Liquid-phase discharge plasma decomposition of methanol for hydrogen production: optimization of electrode configuration [J]. CIESC Journal, 2024, 75(9): 3277-3286. |
[4] | Shuaiqi ZHAO, Rui ZHANG, Han HUANG, Kunpeng ZHAO, Bofeng BAI. Inhibition of water-gas shift reaction on coal gasification in supercritical water [J]. CIESC Journal, 2024, 75(8): 2960-2969. |
[5] | Xianggang ZHANG, Yulong CHANG, Hualin WANG, Xia JIANG. Low energy consumption non-phase change second drying of waste straw and other biomass [J]. CIESC Journal, 2024, 75(7): 2433-2445. |
[6] | Yiqi ZHANG, Xuesong TAN, Wuhuan LI, Quan ZHANG, Changlin MIAO, Xinshu ZHUANG. Efficient fractionation of sugarcane bagasse with phenoxyethanol under mild condition [J]. CIESC Journal, 2024, 75(6): 2274-2282. |
[7] | Ziyang LI, Nan ZHENG, Jiabin FANG, Jinjia WEI. Performance analysis and multi-objective optimization of recompression S-CO2 Brayton cycle [J]. CIESC Journal, 2024, 75(6): 2143-2156. |
[8] | Rufeng XU, Yucheng CHEN, Dan GAO, Jingyu JIAO, Dong GAO, Haibin WANG, Shanjing YAO, Dongqiang LIN. Model-assisted process optimization of ion-exchange chromatography for monoclonal antibody charge variant separation [J]. CIESC Journal, 2024, 75(5): 1903-1911. |
[9] | Dongfei LIU, Fan ZHANG, Zheng LIU, Diannan LU. A review of machine learning potentials and their applications to molecular simulation [J]. CIESC Journal, 2024, 75(4): 1241-1255. |
[10] | Yiru WEN, Jia FU, Dahuan LIU. Advances in machine learning-based materials research for MOFs: energy gas adsorption separation [J]. CIESC Journal, 2024, 75(4): 1370-1381. |
[11] | Yujiao ZENG, Xin XIAO, Gang YANG, Yibo ZHANG, Guangming ZHENG, Fang LI, Fengling WANG. Surrogate modeling and optimization of wet phosphoric acid production process based on mechanism and data hybrid driven [J]. CIESC Journal, 2024, 75(3): 936-944. |
[12] | Yuxiang CHEN, Chuanlei LIU, Zijun GONG, Qiyue ZHAO, Guanchu GUO, Hao JIANG, Hui SUN, Benxian SHEN. Machine learning-assisted solvent molecule design for efficient absorption of ethanethiol [J]. CIESC Journal, 2024, 75(3): 914-923. |
[13] | Lingxian ZHANG, Bin LIU, Lin DENG, Yuhang REN. PEMFC fault diagnosis based on improved TSO optimized Xception [J]. CIESC Journal, 2024, 75(3): 945-955. |
[14] | Yibin DONG, Jingchao XIONG, Jingyu WANG, Shoukang WANG, Yafei WANG, Qunxing HUANG. LiDAR measurement based on model predictive control for boiler combustion optimization [J]. CIESC Journal, 2024, 75(3): 924-935. |
[15] | Yuexing WEI, Ziyue HE, Kezhou YAN, Linyu LI, Yuhong QIN, Chong HE, Luchang JIAO. Catalytic degradation of bisphenol A by modified coal gasification slag [J]. CIESC Journal, 2024, 75(3): 877-889. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 293
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 264
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||