| [1] |
高执棣. 化学热力学基础[M]. 北京: 北京大学出版社, 2006.
|
|
Gao Z D. Fundamental of Mhemical Thermodynamics[M]. Beijing: Peking University Press, 2006.
|
| [2] |
Chen J L, Wilson C R, Ries J C, et al. Rapid ice melting drives Earth's pole to the east[J]. Geophysical Research Letters, 2013, 40(11): 2625-2630.
|
| [3] |
Agyenim F, Hewitt N, Eames P, et al. A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS) [J]. Renewable and Sustainable Energy Reviews, 2010, 14(2): 615-628.
|
| [4] |
Dalvi-Isfahan M, Hamdami N, Le-Bail A. Effect of freezing under electrostatic field on selected properties of an agar gel[J]. Innovative Food Science & Emerging Technologies, 2017, 42: 151-156.
|
| [5] |
Orlowska M, Havet M, Le-Bail A. Controlled ice nucleation under high voltage DC electrostatic field conditions[J]. Food Research International, 2009, 42(7): 879-884.
|
| [6] |
Fallah-Joshaqani S, Hamdami N, Keshavarzi E, et al. Evaluation of the static electric field effects on freezing parameters of some food systems[J]. International Journal of Refrigeration, 2019, 99: 30-36.
|
| [7] |
Carpenter K, Bahadur V. Electrofreezing of water droplets under electrowetting fields[J]. Langmuir, 2015, 31(7): 2243-2248.
|
| [8] |
Zhu W D, Huang Y Y, Zhu C Q, et al. Room temperature electrofreezing of water yields a missing dense ice phase in the phase diagram[J]. Nature Communications, 2019, 10: 1925.
|
| [9] |
Cassone G, Martelli F. Electrofreezing of liquid water at ambient conditions[J]. Nature Communications, 2024, 15(1): 1856.
|
| [10] |
Choi E M, Yoon Y H, Lee S, et al. Freezing transition of interfacial water at room temperature under electric fields[J]. Physical Review Letters, 2005, 95(8): 085701.
|
| [11] |
Ren F D, Shi W J, Cao D L, et al. A theoretical investigation into the cooperativity effect on the TNT melting point under external electric field[J]. Journal of Molecular Modeling, 2021, 27(1): 4.
|
| [12] |
Drozd-Rzoska A, Rzoska S J, Zioło J. Anomalous temperature behavior of nonlinear dielectric effect in supercooled nitrobenzene[J]. Physical Review E, 2008, 77(4): 041501.
|
| [13] |
Han G Z, Wang L. Phase equilibrium pressure of dielectric system under influence of electrostatic fields[J]. Energy, 2018, 142: 90-95.
|
| [14] |
Han G Z, Hu Q X. Effects of electric field on saturated vapor pressure[J]. The Journal of Physical Chemistry C, 2020, 124(3): 1820-1826.
|
| [15] |
Raju G G. Dielectrics in Electric Fields[M]. New York: CRC Press, 2003.
|
| [16] |
韩光泽, 马乐晗. 静电场作用下电介质系统的平衡态及其稳定性[J]. 化工学报, 2017, 68(7): 2660-2666.
|
|
Han G Z, Ma L H. Equilibrium state and its stability of dielectric system acted by electrostatic fields[J]. CIESC Journal, 2017, 68(7): 2660-2666.
|
| [17] |
Leo Lue. Chemical Thermodynamics[M]. London: Ventus Publishing ApS, 2009.
|
| [18] |
Han G Z, Meng J J. Extension of gibbs-duhem equation including influences of external fields[J]. Continuum Mechanics and Thermodynamics, 2018, 30(4): 817-823.
|
| [19] |
郭硕鸿. 电动力学[M] . 3版. 北京: 高等教育出版社, 2008.
|
|
Guo S H. Electrodynamics[M]. 3rd ed. Beijing: Higher Education Press, 2008.
|
| [20] |
Rumble J R. CRC Handbook of Chemistry and Physics[M]. 105th ed. New York: CRC Press, 2024.
|
| [21] |
Worz O, Cole R H. Dielectric properties of ice Ⅰ[J]. The Journal of Chemical Physics 1969, 51(4): 1546-1551.
|
| [22] |
Piekara A. Dielectric constant of liquid and solid nitrobenzene[J]. Nature, 1932, 130: 93.
|
| [23] |
Smyth C P, Hitchcock C S. The dielectric constants and transitions of solid ammonia, hydrogen sulfide and methyl alcohol[J]. Journal of the American Chemical Society, 1934, 56(5): 1084-1087.
|
| [24] |
Kondrin M V, Pronin A A, Lebed Y B, et al. Dielectric constant of disordered phases of the smallest monoalcohols: evidence for the hindered plastic crystal phase[J]. Chemical Physics, 2022, 559: 111554.
|
| [25] |
Tao R, Woestman J T, Jaggi N K. Electric field induced solidification[J]. Applied Physics Letter, 1989, 55(18): 1844-1846.
|