CIESC Journal ›› 2021, Vol. 72 ›› Issue (9): 4445-4457.DOI: 10.11949/0438-1157.20210090
• Reviews and monographs • Previous Articles Next Articles
Huan WANG1(),Fangbao FU1,Qiong LI1,Yuebin XI2(
),Dongjie YANG1(
)
Received:
2021-01-13
Revised:
2021-03-30
Online:
2021-09-05
Published:
2021-09-05
Contact:
Yuebin XI,Dongjie YANG
通讯作者:
席跃宾,杨东杰
作者简介:
王欢(1988—),男,博士,助理研究员,基金资助:
CLC Number:
Huan WANG, Fangbao FU, Qiong LI, Yuebin XI, Dongjie YANG. Research progress on the preparation of lignin-derived carbon materials and their application in catalysis[J]. CIESC Journal, 2021, 72(9): 4445-4457.
王欢, 符方宝, 李琼, 席跃宾, 杨东杰. 木质素碳纳米材料制备及在催化中的应用研究进展[J]. 化工学报, 2021, 72(9): 4445-4457.
9 | Yu J, Li L, Qian Y, et al. Facile and green preparation of high UV-blocking lignin/titanium dioxide nanocomposites for developing natural sunscreens[J]. Industrial & Engineering Chemistry Research, 2018, 57(46): 15740-15748. |
10 | Chen K, Qiu X Q, Yang D J, et al. Amino acid-functionalized polyampholytes as natural broad-spectrum antimicrobial agents for high-efficient personal protection[J]. Green Chemistry, 2020, 22(19): 6357-6371. |
11 | Li Y Y, Qiu X Q, Qian Y, et al. pH-responsive lignin-based complex micelles: preparation, characterization and application in oral drug delivery[J]. Chemical Engineering Journal, 2017, 327: 1176-1183. |
12 | Li Y Y, Yang D J, Lu S, et al. Encapsulating TiO2 in lignin-based colloidal spheres for high sunscreen performance and weak photocatalytic activity[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(6): 6234-6242. |
13 | Qian Y, Qiu X Q, Zhong X W, et al. Lignin reverse micelles for UV-absorbing and high mechanical performance thermoplastics[J]. Industrial & Engineering Chemistry Research, 2015, 54(48): 12025-12030. |
14 | Wang H, Lin W S, Qiu X Q, et al. In situ synthesis of flowerlike lignin/ZnO composite with excellent UV-absorption properties and its application in polyurethane[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(3): 3696-3705. |
15 | Wang H, Wang Y Y, Fu F B, et al. Controlled preparation of lignin/titanium dioxide hybrid composite particles with excellent UV aging resistance and its high value application[J]. International Journal of Biological Macromolecules, 2020, 150: 371-379. |
16 | Wang H, Qiu X Q, Liu W F, et al. A novel lignin/ZnO hybrid nanocomposite with excellent UV-absorption ability and its application in transparent polyurethane coating[J]. Industrial & Engineering Chemistry Research, 2017, 56(39): 11133-11141. |
17 | Saha D, Li Y C, Bi Z H, et al. Studies on supercapacitor electrode material from activated lignin-derived mesoporous carbon[J]. Langmuir, 2014, 30(3): 900-910. |
18 | Jeon J W, Zhang L B, Lutkenhaus J L, et al. Controlling porosity in lignin-derived nanoporous carbon for supercapacitor applications[J]. ChemSusChem, 2015, 8(3): 428-432. |
19 | Zhang B P, Yang D J, Qiu X Q, et al. Influences of aggregation behavior of lignin on the microstructure and adsorptive properties of lignin-derived porous carbons by potassium compound activation[J]. Journal of Industrial and Engineering Chemistry, 2020, 82: 220-227. |
20 | Zhu J D, Yan C Y, Zhang X, et al. A sustainable platform of lignin: from bioresources to materials and their applications in rechargeable batteries and supercapacitors[J]. Progress in Energy and Combustion Science, 2020, 76: 100788. |
21 | Kai D, Tan M J, Chee P L, et al. Towards lignin-based functional materials in a sustainable world[J]. Green Chemistry, 2016, 18(5): 1175-1200. |
22 | Espinoza-Acosta J L, Torres-Chávez P I, Olmedo-Martínez J L, et al. Lignin in storage and renewable energy applications: a review[J]. Journal of Energy Chemistry, 2018, 27(5): 1422-1438. |
23 | Hao Z Q, Cao J P, Dang Y L, et al. Three-dimensional hierarchical porous carbon with high oxygen content derived from organic waste liquid with superior electric double layer performance[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(4): 4037-4046. |
24 | Zhang W L, Lei Y J, Ming F W, et al. Lignin laser lithography: a direct-write method for fabricating 3D graphene electrodes for microsupercapacitors[J]. Advanced Energy Materials, 2018, 8(27): 1801840. |
1 | Wang C, Kelley S S, Venditti R A. Lignin-based thermoplastic materials[J]. ChemSusChem, 2016, 9(8): 770-783. |
2 | Huang S Q, Su S Y, Gan H B, et al. Facile fabrication and characterization of highly stretchable lignin-based hydroxyethyl cellulose self-healing hydrogel[J]. Carbohydrate Polymers, 2019, 223: 115080. |
3 | Xiong W L, Qiu X Q, Yang D J, et al. A simple one-pot method to prepare UV-absorbent lignin/silica hybrids based on alkali lignin from pulping black liquor and sodium metasilicate[J]. Chemical Engineering Journal, 2017, 326: 803-810. |
4 | Xiong W L, Yang D J, Zhong R S, et al. Preparation of lignin-based silica composite submicron particles from alkali lignin and sodium silicate in aqueous solution using a direct precipitation method[J]. Industrial Crops and Products, 2015, 74: 285-292. |
5 | Lin X L, Wu L J, Huang S Q, et al. Effect of lignin-based amphiphilic polymers on the cellulase adsorption and enzymatic hydrolysis kinetics of cellulose[J]. Carbohydrate Polymers, 2019, 207: 52-58. |
6 | Li J R, Li H, Yuan Z, et al. Role of sulfonation in lignin-based material for adsorption removal of cationic dyes[J]. International Journal of Biological Macromolecules, 2019, 135: 1171-1181. |
7 | Zhang B P, Yang D J, Wang H, et al. Activation of enzymatic hydrolysis lignin by NaOH/urea aqueous solution for enhancing its sulfomethylation reactivity[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(1): 1120-1128. |
8 | Zhou Y J, Qian Y, Wang J Y, et al. Bioinspired lignin-polydopamine nanocapsules with strong bioadhesion for long-acting and high-performance natural sunscreens[J]. Biomacromolecules, 2020, 21(8): 3231-3241. |
25 | Zhou Z P, Chen F, Kuang T R, et al. Lignin-derived hierarchical mesoporous carbon and NiO hybrid nanospheres with exceptional Li-ion battery and pseudocapacitive properties[J]. Electrochimica Acta, 2018, 274: 288-297. |
26 | Fu F B, Yang D J, Wang H, et al. Three-dimensional porous framework lignin-derived carbon/ZnO composite fabricated by a facile electrostatic self-assembly showing good stability for high-performance supercapacitors[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(19): 16419-16427. |
27 | Zhang W L, Lin H B, Lin Z Q, et al. 3 D hierarchical porous carbon for supercapacitors prepared from lignin through a facile template-free method[J]. ChemSusChem, 2015, 8(12): 2114-2122. |
28 | Xi Y B, Wang Y Y, Yang D J, et al. K2CO3 activation enhancing the graphitization of porous lignin carbon derived from enzymatic hydrolysis lignin for high performance lithium-ion storage[J]. Journal of Alloys and Compounds, 2019, 785: 706-714. |
29 | Zhao Z H, Hao S M, Hao P, et al. Lignosulphonate-cellulose derived porous activated carbon for supercapacitor electrode[J]. Journal of Materials Chemistry A, 2015, 3(29): 15049-15056. |
30 | Gonzalez-Serrano E, Cordero T, Rodriguez-Mirasol J, et al. Removal of water pollutants with activated carbons prepared from H3PO4 activation of lignin from kraft black liquors[J]. Water Research, 2004, 38(13): 3043-3050. |
31 | Wang J C, Kaskel S. KOH activation of carbon-based materials for energy storage[J]. Journal of Materials Chemistry, 2012, 22(45): 23710-23725. |
32 | Zhang B P, Yang D J, Qian Y, et al. Engineering a lignin-based hollow carbon with opening structure for highly improving the photocatalytic activity and recyclability of ZnO[J]. Industrial Crops and Products, 2020, 155: 112773. |
33 | Liu W S, Yao Y M, Fu O L, et al. Lignin-derived carbon nanosheets for high-capacitance supercapacitors[J]. RSC Adv., 2017, 7(77): 48537-48543. |
34 | Xie A, Dai J D, Chen Y, et al. NaCl-template assisted preparation of porous carbon nanosheets started from lignin for efficient removal of tetracycline[J]. Advanced Powder Technology, 2019, 30(1): 170-179. |
35 | Li H, Yuan D, Tang C H, et al. Lignin-derived interconnected hierarchical porous carbon monolith with large areal/volumetric capacitances for supercapacitor[J]. Carbon, 2016, 100: 151-157. |
36 | Bu Y F, Sun T, Cai Y J, et al. Compressing carbon nanocages by capillarity for optimizing porous structures toward ultrahigh-volumetric-performance supercapacitors[J]. Advanced Materials, 2017, 29(24): 1700470. |
37 | Salinas-Torres D, Ruiz-Rosas R, Valero-Romero M J, et al. Asymmetric capacitors using lignin-based hierarchical porous carbons[J]. Journal of Power Sources, 2016, 326: 641-651. |
38 | Song Y G, Liu J L, Sun K, et al. Synthesis of sustainable lignin-derived mesoporous carbon for supercapacitors using a nano-sized MgO template coupled with Pluronic F127[J]. RSC Adv., 2017, 7(76): 48324-48332. |
39 | Li H, Zhao Y H, Liu S Q, et al. Hierarchical porous carbon monolith derived from lignin for high areal capacitance supercapacitors[J]. Microporous and Mesoporous Materials, 2020, 297: 109960. |
40 | Ma C, Li Z Y, Li J J, et al. Lignin-based hierarchical porous carbon nanofiber films with superior performance in supercapacitors[J]. Applied Surface Science, 2018, 456: 568-576. |
41 | Wang S X, Yang L, Stubbs L P, et al. Lignin-derived fused electrospun carbon fibrous mats as high performance anode materials for lithium ion batteries[J]. ACS Applied Materials & Interfaces, 2013, 5(23): 12275-12282. |
42 | Lai C L, Zhou Z P, Zhang L F, et al. Free-standing and mechanically flexible mats consisting of electrospun carbon nanofibers made from a natural product of alkali lignin as binder-free electrodes for high-performance supercapacitors[J]. Journal of Power Sources, 2014, 247: 134-141. |
43 | Kim C, Yang K S, Kojima M, et al. Fabrication of electrospinning-derived carbon nanofiber webs for the anode material of lithium-ion secondary batteries[J]. Advanced Functional Materials, 2006, 16(18): 2393-2397. |
44 | Liu S T, Zhou J S, Song H H. 2D Zn-hexamine coordination frameworks and their derived N-rich porous carbon nanosheets for ultrafast sodium storage[J]. Advanced Energy Materials, 2018, 8(22): 1800569. |
45 | Wang M, Liu X, Song P P, et al. Transformation of lignosulfonate into graphene-like 2D nanosheets: self-assembly mechanism and their potential in biomedical and electrical applications[J]. International Journal of Biological Macromolecules, 2019, 128: 621-628. |
46 | Fu F B, Yang D J, Zhang W L, et al. Green self-assembly synthesis of porous lignin-derived carbon quasi-nanosheets for high-performance supercapacitors[J]. Chemical Engineering Journal, 2020, 392: 123721. |
47 | Zhang B P, Yang D J, Qiu X Q, et al. Fabricating ZnO/lignin-derived flower-like carbon composite with excellent photocatalytic activity and recyclability[J]. Carbon, 2020, 162: 256-266. |
48 | Zhang W, Yu C Y, Chang L B, et al. Three-dimensional nitrogen-doped hierarchical porous carbon derived from cross-linked lignin derivatives for high performance supercapacitors[J]. Electrochimica Acta, 2018, 282: 642-652. |
49 | Liu F Y, Wang Z X, Zhang H T, et al. Nitrogen, oxygen and sulfur co-doped hierarchical porous carbons toward high-performance supercapacitors by direct pyrolysis of kraft lignin[J]. Carbon, 2019, 149: 105-116. |
50 | Zhang K J, Liu M R, Zhang T Z, et al. High-performance supercapacitor energy storage using a carbon material derived from lignin by bacterial activation before carbonization[J]. Journal of Materials Chemistry A, 2019, 7(47): 26838-26848. |
51 | Guo N N, Li M, Sun X K, et al. Enzymatic hydrolysis lignin derived hierarchical porous carbon for supercapacitors in ionic liquids with high power and energy densities[J]. Green Chemistry, 2017, 19(11): 2595-2602. |
52 | Shen Y X, Li Y H, Yang G X, et al. Lignin derived multi-doped (N, S, Cl) carbon materials as excellent electrocatalyst for oxygen reduction reaction in proton exchange membrane fuel cells[J]. Journal of Energy Chemistry, 2020, 44: 106-114. |
53 | Xi Y B, Huang S, Yang D J, et al. Hierarchical porous carbon derived from the gas-exfoliation activation of lignin for high-energy lithium-ion batteries[J]. Green Chemistry, 2020, 22(13): 4321-4330. |
54 | Wang H, Qiu X Q, Liu W F, et al. Facile preparation of well-combined lignin-based carbon/ZnO hybrid composite with excellent photocatalytic activity[J]. Applied Surface Science, 2017, 426: 206-216. |
55 | Chen F, Zhou W J, Yao H F, et al. Self-assembly of NiO nanoparticles in lignin-derived mesoporous carbons for supercapacitor applications[J]. Green Chemistry, 2013, 15(11): 3057-3063. |
56 | Gómez-Avilés A, Peñas-Garzón M, Bedia J, et al. C-modified TiO2 using lignin as carbon precursor for the solar photocatalytic degradation of acetaminophen[J]. Chemical Engineering Journal, 2019, 358: 1574-1582. |
57 | Liu B, Khare A, Aydil E S. TiO2-B/anatase core-shell heterojunction nanowires for photocatalysis[J]. ACS Applied Materials & Interfaces, 2011, 3(11): 4444-4450. |
58 | Su Y, Yang Y, Zhang H, et al. Enhanced photodegradation of methyl orange with TiO₂ nanoparticles using a triboelectric nanogenerator[J]. Nanotechnology, 2013, 24(29): 295401. |
59 | Han C, Chen Z, Zhang N, et al. Hierarchically CdS decorated 1D ZnO nanorods-2D graphene hybrids: low temperature synthesis and enhanced photocatalytic performance[J]. Advanced Functional Materials, 2015, 25(2): 221-229. |
60 | Srisasiwimon N, Chuangchote S, Laosiripojana N, et al. TiO2/lignin-based carbon composited photocatalysts for enhanced photocatalytic conversion of lignin to high value chemicals[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 13968-13976. |
61 | Chen X Y, Kuo D H, Lu D F, et al. Synthesis and photocatalytic activity of mesoporous TiO2 nanoparticle using biological renewable resource of un-modified lignin as a template[J]. Microporous and Mesoporous Materials, 2016, 223: 145-151. |
62 | Lai C L, Kolla P, Zhao Y, et al. Lignin-derived electrospun carbon nanofiber mats with supercritically deposited Ag nanoparticles for oxygen reduction reaction in alkaline fuel cells[J]. Electrochimica Acta, 2014, 130: 431-438. |
63 | Peng X W, Zhang L, Chen Z X, et al. Hierarchically porous carbon plates derived from wood as bifunctional ORR/OER electrodes[J]. Advanced Materials, 2019, 31(16): 1900341. |
64 | García-Mateos F J, Cordero-Lanzac T, Berenguer R, et al. Lignin-derived Pt supported carbon (submicron)fiber electrocatalysts for alcohol electro-oxidation[J]. Applied Catalysis B: Environmental, 2017, 211: 18-30. |
65 | Zhou H, Hong S, Zhang H, et al. Toward biomass-based single-atom catalysts and plastics: highly active single-atom Co on N-doped carbon for oxidative esterification of primary alcohols[J]. Applied Catalysis B: Environmental, 2019, 256: 117767. |
66 | Qin H F, Kang S F, Wang Y G, et al. Lignin-based fabrication of Co@C core-shell nanoparticles as efficient catalyst for selective Fischer-Tropsch synthesis of C5+ compounds[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(3): 1240-1247. |
67 | Qin H F, Zhou Y, Bai J R, et al. Lignin-derived thin-walled graphitic carbon-encapsulated iron nanoparticles: growth, characterization, and applications[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(2): 1917-1923. |
68 | Qin H F, Jian R H, Bai J R, et al. Influence of molecular weight on structure and catalytic characteristics of ordered mesoporous carbon derived from lignin[J]. ACS Omega, 2018, 3(1): 1350-1356. |
69 | Bedia J, Rosas J M, Rodríguez-Mirasol J, et al. Pd supported on mesoporous activated carbons with high oxidation resistance as catalysts for toluene oxidation[J]. Applied Catalysis B: Environmental, 2010, 94(1/2): 8-18. |
70 | Martin-Martinez M, Barreiro M F F, Silva A M T, et al. Lignin-based activated carbons as metal-free catalysts for the oxidative degradation of 4-nitrophenol in aqueous solution[J]. Applied Catalysis B: Environmental, 2017, 219: 372-378. |
[1] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[2] | Jiali ZHENG, Zhihui LI, Xinqiang ZHAO, Yanji WANG. Kinetics of ionic liquid catalyzed synthesis of 2-cyanofuran [J]. CIESC Journal, 2023, 74(9): 3708-3715. |
[3] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[4] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[5] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[6] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[7] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[8] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[9] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[10] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[11] | Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance [J]. CIESC Journal, 2023, 74(7): 2908-2918. |
[12] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[13] | Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review [J]. CIESC Journal, 2023, 74(7): 2735-2752. |
[14] | Zhilong WANG, Ye YANG, Zhenzhen ZHAO, Tao TIAN, Tong ZHAO, Yahui CUI. Influence of mixing time and sequence on the dispersion properties of the cathode slurry of lithium-ion battery [J]. CIESC Journal, 2023, 74(7): 3127-3138. |
[15] | Jipeng ZHOU, Wenjun HE, Tao LI. Reaction engineering calculation of deactivation kinetics for ethylene catalytic oxidation over irregular-shaped catalysts [J]. CIESC Journal, 2023, 74(6): 2416-2426. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 1110
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 1009
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||