CIESC Journal ›› 2017, Vol. 68 ›› Issue (7): 2631-2640.DOI: 10.11949/j.issn.0438-1157.20170127
Previous Articles Next Articles
SONG Liubin1, TANG Fuli1, XIAO Zhongliang1, LI Lingjun2, CAO Zhong1, HU Chaoming1, LIU Jiao1, LI Xinyu1
Received:
2017-02-07
Revised:
2017-03-22
Online:
2017-07-05
Published:
2017-07-05
Contact:
10.11949/j.issn.0438-1157.20170127
Supported by:
supported by the National Natural Science Foundation of China (21501015, 21545010, 31527803), the STS Project of the Chinese Academy of Sciences (KFJ-SW-STS-173), the Natural Science Foundation of Hunan Province (2016JJ3007) and the Scientific Program of Hunan Province (2015GK1046).
宋刘斌1, 唐福利1, 肖忠良1, 李灵均2, 曹忠1, 胡超明1, 刘姣1, 李新宇1
通讯作者:
肖忠良
基金资助:
国家自然科学基金项目(21501015,21545010,31527803);中国科学院环境监测STS项目(KFJ-SW-STS-173);湖南省自然科学基金项目(2016JJ3007);湖南省科技计划项目(2015GK1046)。
CLC Number:
SONG Liubin, TANG Fuli, XIAO Zhongliang, LI Lingjun, CAO Zhong, HU Chaoming, LIU Jiao, LI Xinyu. Current status and development trend of conductive polyaniline lithium-ion battery composites[J]. CIESC Journal, 2017, 68(7): 2631-2640.
宋刘斌, 唐福利, 肖忠良, 李灵均, 曹忠, 胡超明, 刘姣, 李新宇. 含导电聚苯胺类锂离子电池复合材料的现状及发展趋势[J]. 化工学报, 2017, 68(7): 2631-2640.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20170127
[1] | 汪晓芹, 廖晓兰, 周安宁. 聚苯胺及其复合材料研究现状[J]. 应用化学, 2001, 30(1): 4-8.WANG X Q, LIAO X L, ZHOU A N. Research advancement of polyaniline and its composites[J]. Applied Chemistry, 2001, 30(1): 4-8. |
[2] | LACROIX J C, DIAZ A F. Electrolyte effects on the switching reaction of polyaniline[J]. Journal of the Electrochemical Society, 1988, 135(6): 1457-1463. |
[3] | SHIRAKAWA H, LOUIS E J, MACDIARMID A G, et al. Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene (CH)x[J]. Journal of the Chemical Society, Chemical Communications, 1977, 16(16): 578-580. |
[4] | KAKUTA T, SHIROTA Y, MIKAWA H. A rechargeable battery using electrochemically doped poly(N-vinylcarbazole)[J]. Journal of the Chemical Society, Chemical Communications, 1985, 9(9): 553-554. |
[5] | 郭炳琨, 李新海, 杨松青. 化学电源——电池原理及制造技术[M]. 长沙: 中南大学出版社, 2003: 314-355.GOU B K, LI X H, YANG S Q. Chemical Power-Battery Principle and Manufacturing Technology[M]. Changsha: Central South University Press, 2001, 314-355. |
[6] | 张其锦, 翟焱. 聚苯胺的电化学合成实验[J]. 大学化学, 1998, 13(4): 41-43.ZHANG Q J, ZHAI Y. Electrochemical synthesis experiment of polyaniline[J]. University Chemistry, 1998, 13(4): 41-43. |
[7] | 穆绍林, 阚锦晴. 苯胺在碱性溶液中的电化学聚合和聚合物的性质[J]. 电化学, 1996, 2(1): 54-60.MU S L, KAN J Q. Electrochemical polymerization of aniline in the alkaline solution and properties of polymer[J]. Journal of Electrochemistry, 1996, 2(1): 54-60. |
[8] | 周震涛, 刘芳. (NH4)2S2O8体系聚苯胺合成, 结构与性能研究[J]. 华南理工大学学报(自然科学版), 1995, 23(2): 47-52.ZHOU Z T, LIU F. Studies on the synthesis, structure and properties of polyaniline in (NH4)2S2O8 system[J]. Journal of South China University of Technology(Natural Science Edition), 1995, 23(2): 47-52. |
[9] | 於黄中, 陈明光, 黄河. 不同类型的酸掺杂对聚苯胺结构和电导率的影响[J]. 华南理工大学学报(自然科学版), 2003, 31(5): 21-24.YU H Z, CHEN M G, HUANG H. Effect of different doping acids on the structures and conductivity of polyaniline[J]. Journal of South China University of Technology(Natural Science Edition), 2003, 31(5): 21-24. |
[10] | 杨兰生, 许锦茂, 单忠强, 等. 导电聚合物聚苯胺的化学合成[J]. 化学工业与工程, 1994, 11(2): 7-12.YANG L S, XU J M, SHAN Z Q, et al. The chemical synthesis of conducting polyaniline[J]. Chemical Industry and Engineering, 1994, 11(2): 7-12. |
[11] | DELIGOZ H, ILYLMAZTURK S, GUMUSOGLU T. Nanostructured membrane electrode assemblies from layer-by-layer composite/catalyst containing membranes and their fuel cell performances[J]. Journal of Applied Polymer Science, 2014, 131(11): 2928-2935. |
[12] | MEHDINIA A, FAZLOLLAH MOUSAVI M. Enhancing extraction rate in solid-phase microextraction by using nano-structured polyaniline coating[J]. Journal of Separation Science, 2008, 31(20): 3565-3572. |
[13] | HIGGINS T M, MOULTON S E, GILMORE K J, et al. Gellan gum doped polypyrrole neural prosthetic electrode coatings[J]. Soft Matter, 2011, 7(10): 4690-4695. |
[14] | GAWLI Y, BANERJEE A, DHAKRAS D, et al. 3D polyaniline architecture by concurrent inorganic and organic acid doping for superior and robust high rate supercapacitor performance[J]. Scientific Reports, 2016, 6: 1-10. |
[15] | LU X, DOU H, YANG S, et al. Fabrication and electro-chemical capacitance of hierarchical grapheme/polyaniline/carbon nanotube ternary composite film[J]. Electrochimica Acta, 2011, 56(25): 9224-9232. |
[16] | 包建军, 成煦, 何其佳, 等. 热处理过程中聚苯胺的结构变化[J]. 高分子材料科学与工程, 2004, 20(5): 121-124.BAO J J, CHENG X, HE Q J, et al. A study of polyaniline structure change undergoing heat treatment[J]. Polymer Materials Science and Engineering, 2004, 20(5): 121-124. |
[17] | 张爱勤, 张勇, 王力臻. 掺杂聚苯胺锂电池正极材料的性能研究[J]. 化工新型材料, 2008, 36(2): 19-20.ZHANG A Q, ZHANG Y, WANG L Z. Study of DBSA doped polyaniline used as cathode material for lithium cell[J]. New Chemical Materials, 2008, 36(2): 19-20. |
[18] | DONG R X, LIU C T, HUANG K C, et al. Controlling formation of silver/carbon nanotube networks for highly conductive film surface[J]. ACS Applied Materials & Interfaces, 2012, 4(3): 1449-1455. |
[19] | LI J, TANG X, LI H, et al. Synthesis and thermoelectric properties of hydrochloric acid-doped polyaniline[J]. Synthetic Metals, 2010, 160(11): 1153-1158. |
[20] | WANG Q, YAO Q, CHANG J, et al. Enhanced thermoelectric properties of CNT/PANI composite nanofibers by highly orienting the arrangement of polymer chains[J]. Journal of Materials Chemistry, 2012, 22(34): 17612-17618. |
[21] | 贾艺凡, 刘朝辉, 廖梓珺, 等. 导电聚苯胺的聚合方法及应用研究进展[J]. 材料开发与应用, 2016, 31(1): 97-104.JIA Y F, LIU Z H, LIAO Z J, et al. Progress in preparation and performance of conducting polyaniline[J]. Development and Application of Materials, 2016, 31(1): 97-104. |
[22] | 柳艳, 吉宁, 郭雪峰. 导电聚苯胺的制备方法及应用[J]. 化工中间体, 2009, (3): 4-9.LIU Y, JI N, GUO X F. The preparation and application of conducting polymer polyaniline[J]. Chemical Intermediate, 2009, (3): 4-9. |
[23] | BHADRA S, KHASTGIR D, SINGHA N K, et al. Progress in preparation, processing and applications of polyaniline[J]. Progress in Polymer Science, 2009, 34(8): 783-810. |
[24] | PONNUSWAMY V, ASHOKAN S, JAYAMURUGAN P, et al. Optical, thermal and morphological properties of PANI/P2O5 composites[J]. Optik-International Journal for Light and Electron Optics, 2015, 126(1): 19-23. |
[25] | HUI Y, CAO L, XU Z, et al. In situ synthesis of core-shell Li4Ti5O12@polyaniline composites with enhanced rate performance for lithium-ion battery anodes[J]. Journal of Materials Science & Technology, 2017, 33(3): 231-238. |
[26] | ASHOKAN S, PONNUSWAMY V, JAYAMURUGAN P. Fabrication and characterization PANI/CuO hybrid films by nebulizer spray pyrolysis technique for diode applications[J]. Optik-International Journal for Light and Electron Optics, 2015, 126(20): 2591-2595. |
[27] | IKKALA O, TIITU M, TANNER J, et al. Blends of thermoreversible gels of polyaniline with thermoplastic elastomers: Co-continuous melt processible polymer structures[J]. Synthetic Metals, 1999, 102(1/2/3): 1248-1249. |
[28] | CHEN W M, HUANG Y H, YUAN L X. Self-assembly LiFePO4/polyaniline composite cathode materials with inorganic acids as dopants for lithium-ion batteries[J]. Journal of Electroanalytical Chemistry, 2011, 660(1): 108-113. |
[29] | WANG D W, LI F, ZHAO J, et al. Fabrication of grapheme/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode[J]. ACS Nano, 2009, 3(7): 1745-1752. |
[30] | FENG X M, LI R M, MA Y W, et al. One-step electrochemical synthesis of grapheme/polyaniline composite film and its applications[J]. Advanced Functional Materials, 2011, 21(15): 2989-2996. |
[31] | 周婉秋, 王宇玲, 赵玉明, 等. 循环伏安法合成导电聚苯胺导电性及热稳定性[J]. 沈阳师范大学学报(自然科学版), 2017, 35(1): 29-33.ZHOU W Q, WANG Y L, ZHAO Y M, et al. Electrical conductivity and thermal stability of conductive polyaniline synthesized by cyclic voltammetry[J]. Journal of Shenyang Normal University (Natural Science Edition), 2017, 35(1): 29-33. |
[32] | FAN C L, OM H, ZHANG K H. Influence of conductive electroactive polymer polyaniline on electrochemical performance of LiMn1.95Al0.05O4 cathode for lithium ion batteries[J]. Bulletin of Materials Science, 2013, 36(6): 1005-1011. |
[33] | SEDENKOVA I, TRCHOVA M, DYBAL J, et al. Interaction of polyaniline film with dibutyl phosphonate versus phosphite: enhanced thermal stability[J]. Polymer Degradation and Stability, 2016, 134: 357-365. |
[34] | SNOOK G A, KAO P, BEST A S. Conducting-polymer-based supercapacitor devices and electrodes[J]. Journal of Power Sources, 2011, 196(1): 1-12. |
[35] | 梁庆钦. 锂离子电池金属氧化物电极材料的制备及性能研究[D]. 北京: 清华大学, 2011.LIANG Q Q. Metal oxide materials for lithium-ion batteries: synthesis and electrochemical performance[D]. Beijing: Tsinghua University, 2011. |
[36] | LI B, LI X, LI W, et al. Mesoporous tungsten trioxide polyaniline nanocomposite as an anode material for high-performance lithium-ion batteries[J]. ChemNanoMat, 2016, 2(4): 281-289. |
[37] | DUONG T T, TUAN T Q, DUNG D V A, et al. Application of polyaniline nanowires electrodeposited on the FTO glass substrate as a counter electrode for low-cost dye-sensitized solar cells[J]. Current Applied Physics, 2014, 14(12): 1607-1611. |
[38] | LAI C, ZHANG H Z, LI G R, et al. Mesoporous polyaniline/TiO2, microspheres with core-shell structure as anode materials for lithium ion battery[J]. Journal of Power Sources, 2011, 196(10): 4735-4740. |
[39] | WANG S, HU L, HU Y, et al. Conductive polyaniline capped Fe2O3, composite anode for high rate lithium ion batteries[J]. Materials Chemistry Physics, 2014, 146(3): 289-294. |
[40] | LIU Q, NAYFEH M H, YAU S T. Supercapacitor electrodes based on polyaniline-silicon nanoparticle composite[J]. Journal of Power Sources, 2010, 195(12): 3956-3959. |
[41] | MI H, LI F, HE C, et al. Three-dimensional network structure of silicon-graphene-polyaniline composites as high performance anodes for lithium-ion batteries[J]. Electrochimica Acta, 2016, 190: 1032-1040. |
[42] | LIN H Y, LI C H, WANG D Y, et al. Chemical doping of a core-shell silicon nanoparticles@polyaniline nanocomposite for the performance enhancement of a lithium ion battery anode[J]. Nanoscale, 2016, 8(3): 1280-1287. |
[43] | WU J, ZHANG Q, ZHOU A, et al. Phase-separated polyaniline/ graphene composite electrodes for high-rate electrochemical supercapacitors[J]. Advanced Materials, 2016, 28(46): 10211-10216. |
[44] | ZHOU S, ZHANG H, ZHAO Q, et al. Graphene-wrapped polyaniline nanofibers as electrode materials for organic supercapacitors[J]. Carbon, 2013, 52(2): 440-450. |
[45] | FAN W, ZHANG C, TJIU W W, et al. Graphene-wrapped polyaniline hollow spheres as novel hybrid electrode materials for supercapacitor applications[J]. ACS Appl. Mater. Interfaces, 2013, 5(8): 3382-3391. |
[46] | ZHANG K, ZHANG L L, ZHAO X S, et al. Graphene/polyaniline nanofiber composites as supercapacitor electrodes[J]. Chemistry of Materials, 2010, 22(4): 1392- 1401. |
[47] | LI J, XIE H, LI Y, et al. Electrochemical properties of graphene nanosheets/polyaniline nanofibers composites as electrode for supercapacitors[J]. Journal of Power Sources, 2011, 196(24): 10775-10781. |
[48] | LI G, LI G, YE S, et al. A polyaniline-coated sulfur/carbon composite with an enhanced high-rate capability as a cathode material for lithium/sulfur batteries[J]. Advanced Energy Materials, 2012, 2(10): 1238-1245. |
[49] | 熊仕昭, 王华林, 洪晓斌. 聚苯胺包覆对锂硫电池电化学性能的影响[J]. 电源技术, 2011, 35(6): 678-680.XIONG S Z, WANG H L, HONG X B. Effect of water-soluble polyaniline coating on electrochemical properties of lithium-sulfur batteries[J]. Chinese Journal of Power Sources, 2011, 35(6): 678-680. |
[50] | 王志达. 碳-硫/聚苯胺正极材料制备及其电化学性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.WANG Z D. Fabrication and electrochemical performance of C-S/PANI cathode material[D]. Harbin: Harbin Institute of Technology, 2015. |
[51] | LING A, SONG W, WEI P, et al. Polyaniline-wrapping hollow sulfur with MCM-41 template and improved capacity and cycling performance of lithium sulfur batteries[J]. Renewable Energy, 2016, 99: 289-294. |
[52] | WU F, CHEN J, LI L, et al. Improvement of rate and cycle performence by rapid polyaniline coating of a MWCNT/sulfur cathode[J]. Journal of Physical Chemistry C, 2011, 115(49): 24411-24417. |
[53] | ZHOU W, YU Y, CHEN H, et al. Yolk-shell structure of polyaniline-coated sulfur for lithium-sulfur batteries [J]. Journal of the American Chemical Society, 2013, 135(44): 16736-16743. |
[54] | 李恒, 张丽鹏, 于先进. 锂离子电池正极材料的研究进展[J]. 硅酸盐通报, 2012, 31(6): 1486-1490.LI H, ZHANG L P, YU X J. Research progress for cathode materials of lithium ion battery[J]. Bulletin of the Chinese Ceramic Society, 2012, 31(6): 1486-1490. |
[55] | 孙艳霞, 周园, 申月, 等. 动力型锂离子电池富锂三元正极材料研究进展[J]. 化学通报, 2017, 80(1): 34-40.SUN Y X, ZHOU Y, SHEN Y, et al. Lithium rich ternary cathode materials for dynamical type lithium ion battery[J]. Chemistry, 2017, 80(1): 34-40. |
[56] | ZENG L, FAN C. Structure of polyaniline and its influences on the electrochemical performance of LiCoO2 cathode for lithium ion batteries[J]. Asian Journal of Chemistry, 2013, 25(7):3553-3556. |
[57] | 范长岭. 导电聚合物PPy和PAn在锂离子电池正极中的应用[D]. 长沙: 湖南大学, 2012.FAN C L. The application of conductive polymers PPy and PAn in the positive electrode for lithium ion batteries[D]. Changsha: Hunan University, 2012. |
[58] | 张爱勤, 王力臻, 张志峰. 掺杂导电聚合物对LiMn2O4和LiCoO2电化学性能的影响[J]. 化工新型材料, 2005, 33(4): 29-30.ZHANG A Q, WNAG L Z, ZHANG Z F. The effect of conductive polymer doping on the electrochemical performance of LiMn2O4 and LiCoO2[J]. New Chemical Materials, 2005, 33(4): 29-30. |
[59] | 谌伟民. 聚苯胺、聚吡咯复合材料的制备及其在锂离子电池中的应用[D]. 武汉:华中科技大学, 2012.SHEN W M. Synthesis of polyaniline-based and polypyrrole-based composite materials and their applications in lithium-ion batteries[D]. Wuhan: Huazhong University of Science and Technology, 2012. |
[60] | JIANG Z. Effects of carbon content on the electrochemical performance of LiFePO4/C core/shell nanocomposites fabricated using FePO4/polyaniline as an iron source[J]. Journal of Alloys and Compounds, 2012, 537(1): 308-317. |
[61] | SEHRAWAT R, SIL A. Polymer gel combustion synthesis of LiFePO4/C composite as cathode material for Li-ion battery[J]. Ionics, 2015, 21(3): 673-685. |
[62] | 苏畅, 黄启飞, 徐立环. C-LiFePO4/聚三苯胺复合锂离子电池正极材料的制备与性能[J]. 物理化学学报, 2014, 30(1): 88-94.SU C, HUANG Q F, XU L H. Preparation and performances of C-LiFePO4/polytriphenylamine composite as cathode material for lithium-ion batteries[J]. Acta Physico-Chimica Sinica, 2014, 30(1): 88-94. |
[63] | YAN H, CHEN W, WU X, et al. Conducting polyaniline-wrapped lithium vanadium phosphate nano-composite as high-rate and cycling stability cathode for lithium-ion batteries[J]. Electrochimica Acta, 2014, 146: 295-300. |
[64] | GAO X, WANG J, CHOU S, et al. Synthesis and electrochemical performance of LiV3O8/polyaniline as cathode material for the lithium battery[J]. Journal of Power Sources, 2012, 220: 47-53. |
[65] | RAN L, DUARY J, SANG B. ChemInform abstract: heterogeneous nanostructured electrode materials for electrochemical energy storage[J]. Chemical Communications, 2011, 42(15): 1384-1404. |
[66] | 刘娜. 一种聚苯胺包覆锗掺杂锰酸锂复合正极材料的制备方法: 104466139A[P]. 2015-03-25.LIU N. A polyaniline coated germanium doping method of preparation of manganese acid lithium composite cathode material: 104466139A[P]. 2015-03-25. |
[67] | XUE Q, LI J, XU G, et al. In situ polyaniline modified cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 with high rate capacity for lithium ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(43): 18613-18623. |
[68] | LEE Y, YANG X, KARTHIKEYAN K, et al. Li(Mn1/3Ni1/3Fe1/3)O2-polyaniline hybrids as cathode active material with ultra-fast charge-discharge capability for lithium batteries[J]. Journal of Power Sources, 2013, 232: 240-245. |
[69] | 袁丰肖, 朱国辉, 毛卫民, 等. 导电聚苯胺的热稳定性[J]. 材料导报:网络版, 2006, (4): 22-24.YUAN F X, ZHU G H, MAO W M, et al. Thermal stability of conductive polyaniline[J]. Materials Review: Online, 2006, (4): 22-24. |
[70] | HAGIWARA T, YAMAURA M, IWATA K. Thermal stability of polyaniline[J]. Synthetic Metals, 1988, 25(3): 243-252. |
[71] | 邓姝皓, 陈军, 王之顺, 等. 热处理工艺对硫酸掺杂聚苯胺性能的影响[J]. 高分子材料科学与工程, 2010, 26(7): 109-113.DENG S H, CHEN J, WANG Z S, et al. Influence of heat treatment on performance of polyaniline doped by sulfuric acid[J]. Polymer Materials Science and Engineering, 2010, 26(7): 109-113. |
[72] | 刘燕琴, 毛倩瑾, 周美玲. 导电聚苯胺/纳米Fe3O4复合材料的制备及耐热性研究[J]. 材料工程, 2004, (9): 45-47.LIU Y Q, MAO Q J, ZHOU M L. Synthesis and thermal stability of composite of conducting polyaniline with Fe3O4 nanoparticles[J]. Material Engineering, 2004, (9): 45-47. |
[73] | BHADRA J, MADI N K, ALTHANI N J, et al. Polyaniline/polyvinyl alcohol blends: effect of sulfonic acid dopants on microstructural, optical, thermal and electrical properties[J]. Synthetic Metals, 2014, 191(9): 126-134. |
[74] | XIAO Z L, ZHOU Q Q, SONG L B, et al. Assessment of thermo-electrochemical performance on cathode materials for lithium ion cells[J]. Int. J. Electrochem. Sci., 2016, 11: 2825-2834. |
[75] | 肖忠良, 胡超明, 宋刘斌, 等. 正极材料 LiNi0.8Co0.1Mn0.1O2 的合成工艺优化及电化学性能[J]. 化工学报, 2017, 68(4): 1652-1659.XIAO Z L, HU C M, SONG L B, et al. Optimization for synthesis technology of LiNi0.8Co0.1Mn0.1O2 cathode material and electrochemical performance[J]. CIESC Journal, 2017, 68(4): 1652-1659. |
[76] | SONG L B, XIAO Z L, LI L J, et al. Thermo-electrochemical study on cathode materials for lithium ion cells[J]. Journal of Solid State Electrochemistry, 2015, 19(7): 2167-2175. |
[77] | XIAO Z L, ZHOU Y, SONG L B, et al. Thermal-electrochemical behaviors of LiMn2O4 lithium-ion cell studied by electrochemical calorimetric method[J]. Journal of Alloys and Compounds, 2014, 592: 226-230. |
[78] | SONG L B, LI L J, XIAO Z L, et al. Estimation of temperature distribution of LiFePO4 lithium ion battery during charge-discharge process[J]. Ionics, 2016, 22: 1517-1525.atteries[D]. Wuhan: Huazhong University of Science and Technology, 2012. |
[60] | JIANG Z. Effects of carbon content on the electrochmical performance of LiFePO4/C core/shell nanocomposites fabricated using FePO4/polyaniline as an iron source[J]. Journal of Alloys and Compounds, 2012, 537(1): 308-317. |
[61] | SEHRAWAT R, SIL A. Polymer gel combustion synthesis of LiFePO4/C composite as cathode material for Li-ion battery[J]. Ionics, 2015, 21(3): 673-685. |
[62] | 苏畅, 黄启飞, 徐立环. C-LiFePO4/聚三苯胺复合锂离子电池正极材料的制备与性能[J]. 物理化学学报, 2014, 30(1): 88-94. SU C, HUANG Q F, XU L H. Preparation and performances of C-LiFePO4/polytriphenylamine composite as cathode material for lithium-ion batteries[J]. Acta Physico-Chimica Sinica, 2014, 30(1): 88-94. |
[63] | YAN H, CHEN W, WU X, et al. Conducting polyaniline-wrapped lithium vanadium phosphate nano-composite as high-rate and cycling stability cathode for lithium-ion batteries[J]. Electrochimica Acta, 2014, 146: 295-300. |
[64] | GAO X, WANG J, CHOU S, et al. Synthesis and electrochemical performance of LiV3O8/polyaniline as cathode material for the lithium battery[J]. Journal of Power Sources, 2012, 220: 47-53. |
[65] | RAN L, DUARY J, SANG B. ChemInform abstract: Heterogeneous nanostructured electrode materials for electrochemical energy storage[J]. Chemical Communications, 2011, 42(15): 1384-1404. |
[66] | 刘娜. 一种聚苯胺包覆锗掺杂锰酸锂复合正极材料的制备方法: CN104466139A[P]. 2015-03-25. LIU N. A polyaniline coated germanium doping method of preparation of manganese acid lithium composite cathode material: CN104466139A[P]. 2015-03-25. |
[67] | XUE Q, LI J, XU G, et al. In situ polyaniline modified cathode material Li[Li0.2Mn0.54Ni0.13Co0.13] O2 with high rate capacity for lithium ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(43): 18613-18623. |
[68] | LEE Y, YANG X, KARTHIKEYAN K, et al. Li(Mn1/3Ni1/3Fe1/3)O2-Polyaniline hybrids as cathode active material with ultra-fast chargeedischarge capability for lithium batteries[J]. Journal of Power Sources, 2013, 232: 240-245. |
[69] | 袁丰肖, 朱国辉, 毛卫民, 等. 导电聚苯胺的热稳定性[J]. 材料导报:网络版, 2006, (4): 22-24. YUAN F X, ZHU G H, MAO W M, et al. Thermal stability of conductive polyaniline[J]. Materials Review: Online, 2006, (4): 22-24. |
[70] | HAGIWARA T, YAMAURA M, IWATA K. Thermal stability of polyaniline[J]. Synthetic Metals, 1988, 25(3): 243-252. |
[71] | 邓姝皓, 陈军, 王之顺, 等. 热处理工艺对硫酸掺杂聚苯胺性能的影响[J]. 高分子材料科学与工程, 2010, 26(7): 109-113. DENG S H, CHEN J, WANG Z S, et al. Influence of heat treatment on performance of polyaniline doped by sulfuric acid[J]. Polymer Materials Science and Engineering, 2010, 26(7): 109-113. |
[72] | 刘燕琴, 毛倩瑾, 周美玲. 导电聚苯胺/纳米Fe3O4复合材料的制备及耐热性研究[J]. 材料工程, 2004, (9): 45-47. LIU Y Q, MAO Q J, ZHOU M L. Synthesis and thermal stability of composite of conducting polyaniline with Fe3O4 nanoparticles[J]. Material Engineering, 2004, (9): 45-47. |
[73] | BHADRA J, MADI N K, ALTHANI N J, et al. Polyaniline/polyvinyl alcohol blends: Effect of sulfonic acid dopants on microstructural, optical, thermal and electrical properties[J]. Synthetic Metals, 2014, 191(9): 126-134. |
[74] | XIAO Z L, ZHOU Q Q, SONG L B, et al. Assessment of thermo-electrochemical performance on cathode materials for lithium ion cells[J]. Int. J. Electrochem. Sci., 2016, 11: 2825-2834. |
[75] | 肖忠良, 胡超明, 宋刘斌, 等. 正极材料LiNi0.8Co0.1Mn0.1O2的合成工艺优化及电化学性能[J]. 化工学报, 2017, 68(4): 1652-1659. XIAO Z L, HU C M, SONG L B, et al. Optimization for synthesis technology of LiNi0.8Co0.1Mn0.1O2 cathode material and electrochemical performance[J]. Journal of Chemical Industry and Engineering, 2017, 68(4): 1652-1659. |
[76] | SONG L B, XIAO Z L, LI L J, et al. Thermo-electrochemical study on cathode materials for lithium ion cells[J]. Journal of Solid State Electrochemistry, 2015, 19(7): 2167-2175. |
[77] | XIAO Z L, ZHOU Y, SONG L B, et al. Thermal-electrochemical behaviors of LiMn2O4 lithium-ion cell studied by electrochemical calorimetric method[J]. Journal of Alloys and Compounds, 2014, 592: 226-230. |
[78] | SONG L B, LI L J, XIAO Z L, et al. Estimation of temperature distribution of LiFePO4 lithium ion battery during charge-discharge process[J]. Ionics, 2016, 22: 1517-1525. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Minghui CHANG, Lin WANG, Jiajia YUAN, Yifei CAO. Study on the cycle performance of salt solution-storage-based heat pump [J]. CIESC Journal, 2023, 74(S1): 329-337. |
[3] | Jianbo HU, Hongchao LIU, Qi HU, Meiying HUANG, Xianyu SONG, Shuangliang ZHAO. Molecular dynamics simulation insight into translocation behavior of organic cage across the cellular membrane [J]. CIESC Journal, 2023, 74(9): 3756-3765. |
[4] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[5] | Xingzhi HU, Haoyan ZHANG, Jingkun ZHUANG, Yuqing FAN, Kaiyin ZHANG, Jun XIANG. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles [J]. CIESC Journal, 2023, 74(8): 3584-3596. |
[6] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[7] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[8] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[9] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[10] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[11] | Ao ZHANG, Yingwu LUO. Low modulus, high elasticity and high peel adhesion acrylate pressure sensitive adhesives [J]. CIESC Journal, 2023, 74(7): 3079-3092. |
[12] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[13] | Bin CAI, Xiaolin ZHANG, Qian LUO, Jiangtao DANG, Liyuan ZUO, Xinmei LIU. Research progress of conductive thin film materials [J]. CIESC Journal, 2023, 74(6): 2308-2321. |
[14] | Xueyan WEI, Yong QIAN. Experimental study on the low to medium temperature oxidation characteristics and kinetics of micro-size iron powder [J]. CIESC Journal, 2023, 74(6): 2624-2638. |
[15] | Chengze WANG, Kaili GU, Jinhua ZHANG, Jianxuan SHI, Yiwei LIU, Jinxiang LI. Sulfidation couples with aging to enhance the reactivity of zerovalent iron toward Cr(Ⅵ) in water [J]. CIESC Journal, 2023, 74(5): 2197-2206. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||