CIESC Journal ›› 2025, Vol. 76 ›› Issue (12): 6739-6747.DOI: 10.11949/0438-1157.20250310
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Junting CHEN1(
), Zexin CHEN2, Minghao LAI3, Jialin ZHANG2, Jingyuan GUO1(
), Zhengye XIONG1
Received:2025-03-27
Revised:2025-05-21
Online:2026-01-23
Published:2025-12-31
Contact:
Jingyuan GUO
陈俊廷1(
), 陈泽鑫2, 赖铭浩3, 张佳琳2, 郭竞渊1(
), 熊正烨1
通讯作者:
郭竞渊
作者简介:陈俊廷(2003—),男,本科生,2549878577@qq.com
基金资助:CLC Number:
Junting CHEN, Zexin CHEN, Minghao LAI, Jialin ZHANG, Jingyuan GUO, Zhengye XIONG. Luminescence characterization, first-principle calculations and dose-rate response studies of Zn3Ga2Ge2O10: Cr3+, Pr3+ nanophosphors[J]. CIESC Journal, 2025, 76(12): 6739-6747.
陈俊廷, 陈泽鑫, 赖铭浩, 张佳琳, 郭竞渊, 熊正烨. Zn3Ga2Ge2O10: Cr3+, Pr3+纳米磷光体的发光特性、第一性原理计算和剂量率响应研究[J]. 化工学报, 2025, 76(12): 6739-6747.
Add to citation manager EndNote|Ris|BibTeX
| No. | Temperature of TL peak/℃ | E(activation energy of the captured electrons)/eV | s(frequency factor)/s-1 | n0(electron concentration) | b(kinetic order) |
|---|---|---|---|---|---|
| Peak1 | 73.80 | 0.60 | 5.6×107 | 1.29×107 | 2 |
| Peak2 | 103.80 | 1.01 | 4.9×1012 | 5.04×106 | 2 |
| Peak3 | 131.01 | 1.14 | 2.9×1013 | 5.67×106 | 2 |
| Peak4 | 159.40 | 1.32 | 3.8×1014 | 3.14×106 | 1.97 |
| Peak5 | 193.90 | 0.75 | 1.0×107 | 5.49×106 | 2 |
Table 1 Kinetics parameters of glow peaks in TL glowcurve of Zn3Ga2Ge2O10:Cr3+,Pr3+
| No. | Temperature of TL peak/℃ | E(activation energy of the captured electrons)/eV | s(frequency factor)/s-1 | n0(electron concentration) | b(kinetic order) |
|---|---|---|---|---|---|
| Peak1 | 73.80 | 0.60 | 5.6×107 | 1.29×107 | 2 |
| Peak2 | 103.80 | 1.01 | 4.9×1012 | 5.04×106 | 2 |
| Peak3 | 131.01 | 1.14 | 2.9×1013 | 5.67×106 | 2 |
| Peak4 | 159.40 | 1.32 | 3.8×1014 | 3.14×106 | 1.97 |
| Peak5 | 193.90 | 0.75 | 1.0×107 | 5.49×106 | 2 |
| [1] | 袁杰. 有机长余辉材料的设计、制备及性能研究[D]. 南京: 南京邮电大学, 2019. |
| Yuan J. Design, preparation and properties of organic long afterglow materials[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2019. | |
| [2] | Shen S, Xie Q S, Sahoo S R, et al. Edible long-afterglow photoluminescent materials for bioimaging[J]. Advanced Materials, 2024, 36(30): 2404888. |
| [3] | Wei X J, Ning H R, Huang X D, et al. Molten salt synthesis of persistent luminescent/magnetic Cr3+-doped zinc gallogermanate particles[J]. The Journal of Physical Chemistry C, 2023, 127(7): 3733-3741. |
| [4] | Xu S, Chen R F, Zheng C, et al. Excited state modulation for organic afterglow: materials and applications[J]. Advanced Materials, 2016, 28(45): 9920-9940. |
| [5] | Chang C K, Mao D L. Long lasting phosphorescence of Sr4Al14O25: Eu2+, Dy3+ thin films by magnetron sputtering[J]. Thin Solid Films, 2004, 460(1/2): 48-52. |
| [6] | Chen K, Wang X J, Yang G H, et al. Luminescent properties of Ca2GdZr2Al3O12:Mn4+ and Bi3+ codoped phosphors[J]. Acta Optica Sinica, 2019, 39(2): 0216001. |
| [7] | 李杨. 近红外长余辉发光材料的设计、合成、性能与应用[D]. 广州: 华南理工大学, 2014. |
| Li, Design Y., synthesis, properties, and applications of near-infrared long persistent luminescence materials. [D]. Guangzhou: South China University of Technology, 2014. | |
| [8] | Li X, Zhang H B, Zhang C Y, et al. Time-dependent photoluminescence patterns based on Cr3+-doped and Co-doped Zn3Ga2Ge2O10 [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 418: 113403. |
| [9] | 白琼宇, 王春浩. 植物补光用In3+掺杂Zn3Ga2Ge2O10∶Cr3+远红光发光材料的性能研究[J]. 人工晶体学报, 2024, 53(9): 1568-1575. |
| Bai Q Y, Wang C H. Performance of In3+ doped Zn3Ga2Ge2O10∶Cr3+ far-red light emitting materials for plant light supplement[J]. Journal of Synthetic Crystals, 2024, 53(9): 1568-1575. | |
| [10] | Zhang S Y, Tang K Y, Fan H J, et al. A radioluminescence study of dose characteristics of Lif: Mg, Ti[J]. Radiation Protection Dosimetry, 2021, 195(2): 69-74. |
| [11] | 张留伟. 近红外长余辉纳米材料的控制合成及生物应用[D]. 长沙: 湖南大学, 2022. |
| Zhang L W. Controlled synthesis and biological application of near infrared long afterglow nanomaterials[D]. Changsha: Hunan University, 2022. | |
| [12] | Lv H Y, Liu Z C, Wang C, et al. Improved thermal stability of the near-infrared Al-modulated Zn3Ga2GeO8: Cr3+ phosphors for plant growth applications[J]. Journal of the American Ceramic Society, 2022, 105(2): 966-976. |
| [13] | Liu F, Liang Y J, Pan Z W. Detection of up-converted persistent luminescence in the near infrared emitted by the Zn3Ga2GeO8: Cr3+, Yb3+, Er3+ phosphor[J]. Physical Review Letters, 2014, 113: 177401-1-177401-5. |
| [14] | 郝先东, 邱宏菊, 桂雨曦, 等. 镧系锗酸盐合成及应用的研究进展[J]. 硅酸盐通报, 2021, 40(11): 3730-3739. |
| Hao X D, Qiu H J, Gui Y X, et al. Research progress on synthesis and application of lanthanide germanates[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(11): 3730-3739. | |
| [15] | 姜荣云. 面向精准医疗应用的近红外长余辉纳米探针的设计、制备及发光机理研究[D]. 长春: 东北师范大学, 2020. |
| Jiang R Y. Design, preparation and luminescence mechanism of near-infrared long afterglow nanoprobe for precision medical applications[D]. Changchun: Northeast Normal University, 2020. | |
| [16] | Neto J M, Abritta T, Barros F D S, et al. A comparative study of the ptical properties of Fe3+ in ordered LiGa5O8 and LiAl5O8 [J]. Journal of Luminescence, 1981, 22(2): 109-120. |
| [17] | Wang X Y, Qiao H Y, Wang X M, et al. NIR photoluminescence of ZnGa2O4: Cr nanoparticles synthesized by hydrothermal process[J]. Journal of Materials Science: Materials in Electronics, 2022, 33(24): 19129-19137. |
| [18] | Yang J, Liu Y X, Yan D T, et al. A vacuum-annealing strategy for improving near-infrared super long persistent luminescence in Cr3+ doped zinc gallogermanate nanoparticles for bio-imaging[J]. Dalton Transactions, 2016, 45(4): 1364-1372. |
| [19] | Pan Z W, Lu Y Y, Liu F. Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates[J]. Nature Materials, 2011, 11(1): 58-63. |
| [20] | Yang J, Jiang R Y, Meng Y Q, et al. NIR-Ⅰ/Ⅲ afterglow induced by energy transfers between Er and Cr codoped in ZGGO nanoparticles for potential bioimaging[J]. Journal of the American Ceramic Society, 2021, 104(9): 4637-4648. |
| [21] | Wang S, Yang J, Li Y Q, et al. The improved size distribution and NIR luminescence of ZGGO: Cr3+ nanoparticles induced by Y3+ doping[J]. Materials Research Bulletin, 2024, 169: 112507. |
| [22] | Abdukayum A, Chen J T, Zhao Q, et al. Functional near infrared-emitting Cr3+/Pr3+ co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging[J]. Journal of the American Chemical Society, 2013, 135(38): 14125-14133. |
| [23] | Kumar Rajwar B, Manam J, Kumar Sharma S. An attempt to enhance the afterglow luminescence of NIR light emitting long persistent phosphor Zn3Ga2Ge2O10: Cr3+ by Pr3+ co-doping[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2023, 293: 122512. |
| [24] | 刘宁. 表面修饰对稀土掺杂纳米发光材料发光性质影响的研究[D]. 长春: 吉林大学, 2011. |
| Liu N. Effect of surface modification n luminescence properties of rare earth doped nanoluminescent materials[D]. Changchun: Jilin University, 2011. | |
| [25] | Castelli F, Forster L S. Fluorescence (4T2→4A2) and phosphorescence (2E→4A2) in MgO: Cr3+ [J]. Physical Review B, 1975, 11(2): 920. |
| [26] | Mikenda W, Preisinger A. N-lines in the luminescence spectra of Cr3+-doped spinels ( Ⅰ ) identification of N-lines[J]. Journal of Luminescence, 1981, 26(1/2): 53-66. |
| [27] | Mikenda W, Preisinger A. N-lines in the luminescence spectra of Cr3+-doped spinels ( Ⅱ ) rigins of N-lines[J]. Journal of Luminescence, 1981, 26(1/2): 67-83. |
| [28] | Hu Y, Yang Y M, Zhang X F, et al. X-ray-excited super-long green persistent luminescence from Tb3+ monodoped NaYF4[J]. The Journal of Physical Chemistry C, 2020, 124(45): 24940-24948. |
| [29] | Ding D D, Li S, Xu H, et al. X-ray-activated simultaneous near-infrared and short-wave infrared persistent luminescence imaging for long-term tracking of drug delivery[J]. ACS Applied Materials & Interfaces, 2021, 13(14): 16166-16172. |
| [30] | Homayoni H, Sahi S, Ma L, et al. X-ray excited luminescence and persistent luminescence of Sr2MgSi2O7: Eu2+, Dy3+ and their associations with synthesis conditions[J]. Journal of Luminescence, 2018, 198: 132-137. |
| [1] | Ning ZENG, Zhenjiang GUO, Jianhua CHEN, Zixuan ZHANG, Yujiao ZENG, Xin XIAO, Songlin LIU, Shaoxiu XUE, Zhiwu ZHOU, Zhenming LU, Limin WANG. Molecular dynamics simulation of water-insoluble phosphorus in dihydrate wet-process phosphoric acid [J]. CIESC Journal, 2025, 76(9): 4539-4550. |
| [2] | Lixiao WU, Xixi YAN, Suna ZHANG, Yiming XU, Jiaying QIAN, Yongmin QIAO, Lijun WANG. The preparation of phosphorus-doped microcrystalline graphite and its electrochemical performance as an anode material for lithium-ion batteries [J]. CIESC Journal, 2025, 76(7): 3615-3625. |
| [3] | Changyu LI, Qiang ZENG, Jie XIAO, Yangjie ZHANG, zheng ZHANG, Yuanhua LIN. Study on interface modification of LATP-based solid electrolyte membrane by PVDF [J]. CIESC Journal, 2025, 76(6): 2974-2982. |
| [4] | Ji LI, Jiacai WANG, Yongqiang MA, Haibin YUAN, Luming JIAN, Jican JIANG, Jiahua ZHU. Thermodynamic analysis and engineering practice of high efficiently recycle of fluorine contained in tail gas from wet-process phosphoric acid plant [J]. CIESC Journal, 2025, 76(4): 1484-1492. |
| [5] | Ju DONG, Liuyang YU, Shengzhe JIA, Lianjun SHI, Shihan WANG, Guotao HU, Weiwei TANG, Jingkang WANG, Junbo GONG. Current status and research progress of crystallization technology of electronic grade phosphoric acid [J]. CIESC Journal, 2025, 76(2): 438-453. |
| [6] | Yifan JIA, Haiyan GUO, Kerui REN, Dianyong GUAN, Yuming LI. Enhanced endogenous denitrifying phosphorus removal in AOAO-SNEDPR system [J]. CIESC Journal, 2025, 76(12): 6669-6679. |
| [7] | Zhengxin MAO, Jiachang SHEN, Mengxin LIU, Yanjie JI, Qinhong WANG, Maohua YANG, Jianmin XING. Efficient separation of phosphorylated sugars and high-concentration phosphate by nanofiltration [J]. CIESC Journal, 2025, 76(12): 6423-6438. |
| [8] | Xinyan CHEN, Yiling CHEN, Xinbo PENG, Jingjie HU, Xueliang JIANG, Feng YOU. Recent progress in the preparation, structure, and application of thermal insulation materials [J]. CIESC Journal, 2025, 76(12): 6179-6195. |
| [9] | Manfu CHEN, Xi WANG, Jian LI, Biao ZHANG, Chuanlong XU. Simultaneous measurement method for gas flow velocity and temperature fields through phosphorescent particles tracing and full-field intensity ratio calibration [J]. CIESC Journal, 2025, 76(11): 5776-5787. |
| [10] | Xingyue LIN, Xiubin XU, Xin LI, Linjie WEI, Hao WANG, Xi YAO, Xu WU. Liquid metal/cyclodextrin composite biomimetic memory hydrogel [J]. CIESC Journal, 2025, 76(11): 6077-6085. |
| [11] | Jiaxin WANG, Yanhong WEI, Shunyang NONG, Yanshu XIONG, Mei LI, Wen LI. Molecular mechanism analysis of melanoidin adsorption by polyamine-modified chitosan aerogel based on multiple quantum chemical theory calculations [J]. CIESC Journal, 2025, 76(1): 107-119. |
| [12] | Juan JIA, Yang YANG, Xun ZHU, Dingding YE, Rong CHEN, Qiang LIAO. Hydrogel-based drug releasing system with external electricity stimulation for wound dressing [J]. CIESC Journal, 2024, 75(7): 2700-2708. |
| [13] | Haiyan DU, Kai ZHU, Feng YOU, Jinfeng WANG, Yifan ZHAO, Nan ZHANG, Ying LI. Self-healing anti-freezing ionic hydrogel for strain sensors [J]. CIESC Journal, 2024, 75(7): 2709-2722. |
| [14] | Yujiao ZENG, Xin XIAO, Gang YANG, Yibo ZHANG, Guangming ZHENG, Fang LI, Fengling WANG. Surrogate modeling and optimization of wet phosphoric acid production process based on mechanism and data hybrid driven [J]. CIESC Journal, 2024, 75(3): 936-944. |
| [15] | Yifan XU, Yuanchao LIU, Duan LI, Xuhao JIANG, Xinhao LIU, Zishuo LI. Thermoelectric transport properties of double layers phosphorene heterostructure [J]. CIESC Journal, 2024, 75(12): 4825-4832. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||