CIESC Journal ›› 2025, Vol. 76 ›› Issue (10): 4961-4975.DOI: 10.11949/0438-1157.20250387
• Reviews and monographs • Previous Articles Next Articles
Yi LI1(
), Jiyuan WANG1, Xuhai PAN1,2(
), Zhilei WANG1,2(
), Min HUA1
Received:2025-04-13
Revised:2025-05-07
Online:2025-11-25
Published:2025-10-25
Contact:
Xuhai PAN, Zhilei WANG
李怡1(
), 王纪元1, 潘旭海1,2(
), 汪志雷1,2(
), 华敏1
通讯作者:
潘旭海,汪志雷
作者简介:李怡(2001—),女,硕士研究生,202361201129@njtech.edu.cn
基金资助:CLC Number:
Yi LI, Jiyuan WANG, Xuhai PAN, Zhilei WANG, Min HUA. Research progress on safety of hydrogen production by alkaline electrolysis of water[J]. CIESC Journal, 2025, 76(10): 4961-4975.
李怡, 王纪元, 潘旭海, 汪志雷, 华敏. 碱性电解水制氢安全研究进展[J]. 化工学报, 2025, 76(10): 4961-4975.
Add to citation manager EndNote|Ris|BibTeX
| [1] | 朱朱, 王杰, 高丽萍, 等. 风光制氢一体化项目规模配置研究[J]. 水力发电, 2025, 51(2): 103-107. |
| Zhu Z, Wang J, Gao L P, et al. Research on capacity configuration of wind/solar-to-hydrogen integrated project[J]. Water Power, 2025, 51(2): 103-107. | |
| [2] | Ajanovic A, Sayer M, Haas R. The economics and the environmental benignity of different colors of hydrogen[J]. International Journal of Hydrogen Energy, 2022, 47(57): 24136-24154. |
| [3] | 刘柄呈. 输气管道末端场站掺氢技术分析[J]. 石化技术, 2024, 31(7): 107-109. |
| Liu B C. Analysis of hydrogen mixing technology in terminal station of gas pipeline[J]. Petrochemical Industry Technology, 2024, 31(7): 107-109. | |
| [4] | Ewan B C R, Allen R W K. A figure of merit assessment of the routes to hydrogen[J]. International Journal of Hydrogen Energy, 2005, 30(8): 809-819. |
| [5] | Anand C, Chandraja B, Nithiya P, et al. Green hydrogen for a sustainable future: a review of production methods, innovations, and applications[J]. International Journal of Hydrogen Energy, 2025, 111: 319-341. |
| [6] | Dash S, Arjun Singh K, Jose S, et al. Advances in green hydrogen production through alkaline water electrolysis: a comprehensive review[J]. International Journal of Hydrogen Energy, 2024, 83: 614-629. |
| [7] | Agrawal D, Mahajan N, Singh S A, et al. Green hydrogen production pathways for sustainable future with net zero emissions[J]. Fuel, 2024, 359: 130131. |
| [8] | 曾升, 李进, 王鑫, 等. 中国氢能利用技术进展及前景展望[J]. 电源技术, 2022, 46(7): 716-722. |
| Zeng S, Li J, Wang X, et al. Progress and prospect of hydrogen energy utilization technology in China[J]. Chinese Journal of Power Sources, 2022, 46(7): 716-722. | |
| [9] | 黄丹极. 碱性电解水制氢设备多物理场建模及系统应用[D]. 武汉: 华中科技大学, 2024. |
| Huang D J. Multi-physical field modeling and system application of alkaline electrolyzed water hydrogen production equipment[D]. Wuhan: Huazhong University of Science and Technology, 2024. | |
| [10] | 周钧, 吴文宏. 压滤式电解水制氢电解槽极板腐蚀机理的研究[J]. 舰船科学技术, 2006, 28(2): 34-37. |
| Zhou J, Wu W H. Study of the corrosion mechanism for electrolyser plate electrode[J]. Ship Science and Technology, 2006, 28(2): 34-37. | |
| [11] | Huang D J, Xiong B Y, Fang J K, et al. A multiphysics model of the compactly-assembled industrial alkaline water electrolysis cell[J]. Applied Energy, 2022, 314: 118987. |
| [12] | 聂知力. 新型碱性电解槽实验研究[D]. 北京: 北京化工大学, 2023. |
| Nie Z L. Experimental study on new alkaline electrolyzer[D]. Beijing: Beijing University of Chemical Technology, 2023. | |
| [13] | Emam A S, Hamdan M O, Abu-Nabah B A, et al. A review on recent trends, challenges, and innovations in alkaline water electrolysis[J]. International Journal of Hydrogen Energy, 2024, 64: 599-625. |
| [14] | López-Fernández E, Sacedón C G, Gil-Rostra J, et al. Recent advances in alkaline exchange membrane water electrolysis and electrode manufacturing[J]. Molecules, 2021, 26(21): 6326. |
| [15] | Sebbahi S, Assila A, Alaoui Belghiti A, et al. A comprehensive review of recent advances in alkaline water electrolysis for hydrogen production[J]. International Journal of Hydrogen Energy, 2024, 82: 583-599. |
| [16] | Wan L, Xu Z A, Xu Q, et al. Key components and design strategy of the membrane electrode assembly for alkaline water electrolysis[J]. Energy & Environmental Science, 2023, 16(4): 1384-1430. |
| [17] | Mazloomi S K, Sulaiman N. Influencing factors of water electrolysis electrical efficiency[J]. Renewable and Sustainable Energy Reviews, 2012, 16(6): 4257-4263. |
| [18] | Muthiah M, Elnashar M, Afzal W, et al. Safety assessment of hydrogen production using alkaline water electrolysis[J]. International Journal of Hydrogen Energy, 2024, 84: 803-821. |
| [19] | Song D, Hong D, Kwon Y, et al. Highly porous Ni-P electrode synthesized by an ultrafast electrodeposition process for efficient overall water electrolysis[J]. Journal of Materials Chemistry A, 2020, 8(24): 12069-12079. |
| [20] | 潘伟滔, 张玉, 周阳, 等. 氢气制备技术发展现状分析及展望[J]. 煤气与热力, 2022, 42(6): 67-74. |
| Pan W T, Zhang Y, Zhou Y, et al. Analysis and prospect of hydrogen production technologies[J]. Gas & Heat, 2022, 42(6): 67-74. | |
| [21] | Liu Y, Huang Y, Zhou S Q, et al. Synergistic regulation of Pt clusters on porous support by Mo and P for robust bifunctional hydrogen electrocatalysis[J]. Inorganic Chemistry, 2023, 62(22): 8719-8728. |
| [22] | He L X, Wang N, Sun L K, et al. Heterostructure WC/Ni/Cu nanorod array towards ultra-long hydrogen evolution durability at room temperature and industrial conditions[J]. Chemical Engineering Journal, 2024, 500: 157271. |
| [23] | Wu H M, Feng C Q, Zhang L, et al. Non-noble metal electrocatalysts for the hydrogen evolution reaction in water electrolysis[J]. Electrochemical Energy Reviews, 2021, 4(3): 473-507. |
| [24] | 郭雅婷, 邓甜音, 刘艳莹, 等. 碱性电解水制氢隔膜和阳极材料性能研究[J]. 综合智慧能源, 2022, 44(5): 64-68. |
| Guo Y T, Deng T Y, Liu Y Y, et al. Research on the performance of membranes and anode materials in alkaline waterelectrolysis[J]. Integrated Intelligent Energy, 2022, 44(5): 64-68. | |
| [25] | 葛书强, 杨中桂, 白洁, 等. 可再生能源制氢技术及其主要设备发展现状及展望[J]. 太原理工大学学报, 2024, 55(5): 759-787. |
| Ge S Q, Yang Z G, Bai J, et al. Development status and prospect of hydrogen production technology by renewable energy and its main equipment[J]. Journal of Taiyuan University of Technology, 2024, 55(5): 759-787. | |
| [26] | 王逍妍. 镍基多元金属催化电极的制备与析氢稳定性研究[D]. 北京: 北京化工大学, 2024. |
| Wang X Y. Preparation and hydrogen evolution stability of nickel-based multi-metal catalytic electrode[D]. Beijing: Beijing University of Chemical Technology, 2024. | |
| [27] | Gravelle J, Hihn J Y, Pollet B G. Power ultrasound as performance enhancer for alkaline water electrolysis: a review[J]. International Journal of Hydrogen Energy, 2025, 100: 428-441. |
| [28] | Zhang E D, Song W. Review: self-supporting electrocatalysts for HER in alkaline water electrolysis[J]. Journal of the Electrochemical Society, 2024, 171(5): 052503. |
| [29] | 唐阳. 铁钴镍基碱性电解水催化剂的设计与性能研究[D]. 重庆: 西南大学, 2023. |
| Tang Y. Design and performance study of Fe-Co-Ni-based alkaline electrolytic water catalyst[D]. Chongqing: Southwest University, 2023. | |
| [30] | Schalenbach M, Zeradjanin A R, Kasian O, et al. A perspective on low-temperature water electrolysis-challenges in alkaline and acidic technology[J]. International Journal of Electrochemical Science, 2018, 13(2): 1173-1226. |
| [31] | Song W Y, Xia C F, Zaman S, et al. Advances in stability of NiFe-based anodes toward oxygen evolution reaction for alkaline water electrolysis[J]. Small, 2024, 20(48): 2406075. |
| [32] | Hoang A L, Balakrishnan S, Hodges A, et al. High-performing catalysts for energy-efficient commercial alkaline water electrolysis[J]. Sustainable Energy & Fuels, 2023, 7(1): 31-60. |
| [33] | Niu S, Jiang W J, Wei Z X, et al. Se-doping activates FeOOH for cost-effective and efficient electrochemical water oxidation[J]. Journal of the American Chemical Society, 2019, 141(17): 7005-7013. |
| [34] | Zhang J, Wang T, Liu P, et al. Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics[J]. Nature Communications, 2017, 8: 15437. |
| [35] | 龚艺. 碳包覆镍钼基多级结构材料的电解水性能及其稳定性研究[D]. 北京: 北京化工大学, 2019. |
| Gong Y. Study on electrolytic water performance and stability of carbon-coated Ni-Mo-based multi-level structural materials[D]. Beijing: Beijing University of Chemical Technology, 2019. | |
| [36] | Fei H L, Yang Y, Peng Z W, et al. Cobalt nanoparticles embedded in nitrogen-doped carbon for the hydrogen evolution reaction[J]. ACS Applied Materials & Interfaces, 2015, 7(15): 8083-8087. |
| [37] | Liu Y P, Li G D, Yuan L, et al. Carbon-protected bimetallic carbide nanoparticles for a highly efficient alkaline hydrogen evolution reaction[J]. Nanoscale, 2015, 7(7): 3130-3136. |
| [38] | 魏申琦. 高性能三维石墨烯基电催化剂的构筑及其析氢性能的研究[D]. 上海: 华东师范大学, 2024. |
| Wei S Q. Construction of high performance three-dimensional graphene-based electrocatalyst and its hydrogen evolution performance[D]. Shanghai: East China Normal University, 2024. | |
| [39] | Yang H Y, Driess M, Menezes P W. Self-supported electrocatalysts for practical water electrolysis[J]. Advanced Energy Materials, 2021, 11(39): 2102074. |
| [40] | 叶荣榕, 曹圆圆, 周丽娜, 等. 三维自支撑电催化析氢催化剂的研究进展[J]. 中国科学: 化学, 2025, 55(3): 636-660. |
| Ye R R, Cao Y Y, Zhou L N, et al. Self-supported electrocatalysts for electrocatalytic hydrogen evolution reaction[J]. Scientia Sinica Chimica, 2025, 55(3): 636-660. | |
| [41] | Zhu Z X, Lin Y X, Fang P, et al. Orderly nanodendritic nickel substitute for raney nickel catalyst improving alkali water electrolyzer[J]. Advanced Materials, 2024, 36(1): 2307035. |
| [42] | Wang J Y, Ji L L, Zuo S S, et al. Hierarchically structured 3D integrated electrodes by galvanic replacement reaction for highly efficient water splitting[J]. Advanced Energy Materials, 2017, 7(14): 1700107. |
| [43] | Xu W W, Lu Z Y, Sun X M, et al. Superwetting electrodes for gas-involving electrocatalysis[J]. Accounts of Chemical Research, 2018, 51(7): 1590-1598. |
| [44] | Li H Y, Chen S M, Zhang Y, et al. Systematic design of superaerophobic nanotube-array electrode comprised of transition-metal sulfides for overall water splitting[J]. Nature Communications, 2018, 9(1): 2452. |
| [45] | Shan X Y, Liu P J, Mu H R, et al. An engineered superhydrophilic/superaerophobic electrocatalyst composed of the supported CoMoS x chalcogel for overall water splitting[J]. Angewandte Chemie International Edition, 2020, 59(4): 1659-1665. |
| [46] | Chen Y, Xu Z B, Chen G Z. Nano-scale engineering of heterojunction for alkaline water electrolysis[J]. Materials, 2024, 17(1): 199. |
| [47] | 石航博. 碱水制氢电解槽的开发与流场仿真及优化研究[D]. 北京: 北京化工大学, 2023. |
| Shi H B. Development, flow field simulation and optimization of electrolyzer for hydrogen production from alkaline water[D]. Beijing: Beijing University of Chemical Technology, 2023. | |
| [48] | 彭富兵, 焦晓宁. 隔膜法制氢电解槽用新型隔膜的研制及其应用[J]. 纺织学报, 2008, 29(12): 42-45. |
| Peng F B, Jiao X N. Development and application of new diaphragms used in electrolyser for hydrogen preparation[J]. Journal of Textile Research, 2008, 29(12): 42-45. | |
| [49] | 刘明昊, 解辉, 张振扬. 制氢用碱性水电解槽隔膜材料研究进展[J]. 化工新型材料, 2023, 51(S2): 561-564. |
| Liu M H, Xie H, Zhang Z Y. Research progress of diaphragm materials for alkaline water electrolyzer for hydrogen production[J]. New Chemical Materials, 2023, 51(S2): 561-564. | |
| [50] | 高溢霖, 闫俊, 高原, 等. 聚苯硫醚织物亲水改性及其在碱性电解池中应用[J]. 纺织高校基础科学学报, 2024, 37(6): 83-89. |
| Gao Y L, Yan J, Gao Y, et al. Hydrophilic modification of polyphenylene sulfide fabrics and its application in alkaline electrolytic cell[J]. Basic Sciences Journal of Textile Universities, 2024, 37(6): 83-89. | |
| [51] | 谭策. 聚苯硫醚复合纤维膜的制备及其性能研究[D]. 天津: 天津工业大学, 2021. |
| Tan C. Preparation and properties of polyphenylene sulfide composite fiber membrane[D]. Tianjin: Tianjin Polytechnic University, 2021. | |
| [52] | Gao Y, Zhou X H, Zhang M L, et al. Polyphenylene sulfide-based membranes: recent progress and future perspectives[J]. Membranes, 2022, 12(10): 924. |
| [53] | 李颖娜. 低温等离子体对PPS接枝聚合的研究[D]. 天津: 天津工业大学, 2006. |
| Li Y N. Study on grafting polymerization of PPS by low temperature plasma[D]. Tianjin: Tianjin Polytechnic University, 2006. | |
| [54] | 林雅莉, 孙元, 邓新华. 磺化反应改善PPS非织毡亲水性的研究[J]. 天津工业大学学报, 2005, 24(2): 58-60. |
| Lin Y L, Sun Y, Deng X H. Hydrophilic property of PPS non-woven improved by using sulphuration[J]. Journal of Tianjin Institute of Textile Science and Technology, 2005, 24(2): 58-60. | |
| [55] | 徐志成, 王乐译, 张伟政, 等. 氯磺酸磺化PPS非织毡薄膜及表征[J]. 膜科学与技术, 2016, 36(5): 68-71. |
| Xu Z C, Wang L Y, Zhang W Z, et al. Sulphuration of PPS non-woven felt thin film by chlorosulfonic acid and characterization[J]. Membrane Science and Technology, 2016, 36(5): 68-71. | |
| [56] | 宋子龙. 碱性水电解槽用聚砜隔膜的研制[D]. 长沙: 湖南大学, 2018. |
| Song Z L. Development of polysulfone diaphragm for alkaline water electrolyzer[D]. Changsha: Hunan University, 2018. | |
| [57] | 王志杰, 杨光, 马含冰, 等. 壳聚糖改性聚苯硫醚碱性水电解隔膜的制备与性能研究[J]. 棉纺织技术, 2024, 52(12): 1-6. |
| Wang Z J, Yang G, Ma H B, et al. Preparation and performance study of chitosan-modified polyphenylene sulfide diaphragm for alkaline water electrolysis[J]. Cotton Textile Technology, 2024, 52(12): 1-6. | |
| [58] | Wu Y T, Xu G Q, Zhou J B, et al. Research progress of the porous membranes in alkaline water electrolysis for green hydrogen production[J]. Chemical Engineering Journal, 2025, 505: 159291. |
| [59] | Yu J H, Zhu Q Q, Ma W L, et al. Hydrophilic chitosan-doped composite diaphragm reducing gas permeation for alkaline water electrolysis producing hydrogen[J]. ACS Applied Materials & Interfaces, 2024, 16(1): 1394-1403. |
| [60] | Kuleshov N V, Kuleshov V N, Dovbysh S A, et al. Development and performances of a 0.5 kW high-pressure alkaline water electrolyser[J]. International Journal of Hydrogen Energy, 2019, 44(56): 29441-29449. |
| [61] | Liu L P, Wang J Y, Ren Z B, et al. Ultrathin reinforced composite separator for alkaline water electrolysis: comprehensive performance evaluation[J]. International Journal of Hydrogen Energy, 2023, 48(62): 23885-23893. |
| [62] | Lee H I, Dung D T, Kim J, et al. The synthesis of a Zirfon-type porous separator with reduced gas crossover for alkaline electrolyzer[J]. International Journal of Energy Research, 2020, 44(3): 1875-1885. |
| [63] | 尤岩. 碱性水电解用聚砜隔膜的制备和研究[D]. 天津: 天津大学, 2010. |
| You Y. Preparation and study of polysulfone diaphragm for alkaline water electrolysis[D]. Tianjin: Tianjin University, 2010. | |
| [64] | 易华. 石油化工项目中氢气爆炸的预防控制[J]. 化工管理, 2021(6): 106-107. |
| Yi H. Explore the prevention and control of hydrogen explosion in petrochemical projects[J]. Chemical Enterprise Management, 2021(6): 106-107. | |
| [65] | Barbir F. PEM electrolysis for production of hydrogen from renewable energy sources[J]. Solar Energy, 2005, 78(5): 661-669. |
| [66] | Schalenbach M, Carmo M, Fritz D L, et al. Pressurized PEM water electrolysis: efficiency and gas crossover[J]. International Journal of Hydrogen Energy, 2013, 38(35): 14921-14933. |
| [67] | 李洋洋, 邓欣涛, 古俊杰, 等. 碱性水电解制氢系统建模综述及展望[J]. 汽车工程, 2022, 44(4): 567-582. |
| Li Y Y, Deng X T, Gu J J, et al. Comprehensive review and prospect of the modeling of alkaline water electrolysis system for hydrogen production[J]. Automotive Engineering, 2022, 44(4): 567-582. | |
| [68] | 梁峰. 降低可再生能源水电解制氢时氧中氢安全风险的措施[J]. 安全、健康和环境, 2024, 24(8): 11-16. |
| Liang F. Measures to reduce the safety risk of hydrogen in oxygen during hydrogen production by hydrogen electrolysis from renewable energy sources[J]. Safety Health & Environment, 2024, 24(8): 11-16. | |
| [69] | 牛萌, 洪振鹏, 李蓓, 等. 考虑制氢效率提升的风电制氢系统优化控制策略[J]. 太阳能学报, 2023, 44(9): 366-376. |
| Niu M, Hong Z P, Li B, et al. Optimal control strategy of wind power to hydrogen system considering electrolyzer efficiency improvement[J]. Acta Energiae Solaris Sinica, 2023, 44(9): 366-376. | |
| [70] | 黄超, 李航, 周利, 等. 基于PCA-ANN的碱性电解水系统气体纯度预测[J]. 华东理工大学学报(自然科学版), 2023, 49(3): 305-314. |
| Huang C, Li H, Zhou L, et al. Gas purity prediction of alkaline water electrolysis system based on PCA-ANN[J]. Journal of East China University of Science and Technology, 2023, 49(3): 305-314. | |
| [71] | Kirati S K, Hammoudi M, Mousli I M A. Hybrid energy system for hydrogen production in the Adrar region (Algeria): production rate and purity level[J]. International Journal of Hydrogen Energy, 2018, 43(6): 3378-3393. |
| [72] | Haug P, Kreitz B, Koj M, et al. Process modelling of an alkaline water electrolyzer[J]. International Journal of Hydrogen Energy, 2017, 42(24): 15689-15707. |
| [73] | Haug P, Koj M, Turek T. Influence of process conditions on gas purity in alkaline water electrolysis[J]. International Journal of Hydrogen Energy, 2017, 42(15): 9406-9418. |
| [74] | 尹诗斌, 蒋文杰, 文欢. 碱性电解槽制氢技术的研究现状及发展趋势[J]. 西华大学学报(自然科学版), 2025, 44(1): 168-180. |
| Yin S B, Jiang W J, Wen H. Research status and development prospects of hydrogen production technology in alkaline electrolyzer[J]. Journal of Xihua University (Natural Science Edition), 2025, 44(1): 168-180. | |
| [75] | Hu S, Guo B, Ding S L, et al. A comprehensive review of alkaline water electrolysis mathematical modeling[J]. Applied Energy, 2022, 327: 120099. |
| [76] | van Linden N, Spanjers H, van Lier J B. Application of dynamic current density for increased concentration factors and reduced energy consumption for concentrating ammonium by electrodialysis[J]. Water Research, 2019, 163: 114856. |
| [77] | 张腾飞. 碱性水电解制氢系统的建模分析与设计优化[D]. 北京: 北京化工大学, 2023. |
| Zhang T F. Modeling analysis and design optimization of hydrogen production system by alkaline water electrolysis[D]. Beijing: Beijing University of Chemical Technology, 2023. | |
| [78] | 郭育菁. 一种碱水制氢电解槽结构设计及性能优化[D]. 北京: 北京化工大学, 2020. |
| Guo Y J. Structure design and performance optimization of an electrolyzer for hydrogen production from alkaline water[D]. Beijing: Beijing University of Chemical Technology, 2020. | |
| [79] | Oikonomidis S, Ramdin M, Moultos O A, et al. Transient modelling of a multi-cell alkaline electrolyzer for gas crossover and safe system operation[J]. International Journal of Hydrogen Energy, 2023, 48(88): 34210-34228. |
| [80] | Sánchez M, Amores E, Rodríguez L, et al. Semi-empirical model and experimental validation for the performance evaluation of a 15 kW alkaline water electrolyzer[J]. International Journal of Hydrogen Energy, 2018, 43(45): 20332-20345. |
| [81] | Huang P H, Kuo J K, Wu Z D. Applying small wind turbines and a photovoltaic system to facilitate electrolysis hydrogen production[J]. International Journal of Hydrogen Energy, 2016, 41(20): 8514-8524. |
| [82] | 王庆斌, 薛贺来, 马强. 中压SPE水电解制氢装置研究[C]//中国动力工程学会工业气体专业委员会2009年技术论坛论文集. 2010: 154-158. |
| Wang Q B, Xue H L, Ma Q. Research on medium woltage SPE water electrolysis hydrogen production device[C]//Proceedings of the 2009 Technical Forum of the Industrial Gas Professional Committee of the Chinese Society of Power Engineering. 2010: 154-158. | |
| [83] | Janssen H, Bringmann J C, Emonts B, et al. Safety-related studies on hydrogen production in high-pressure electrolysers[J]. International Journal of Hydrogen Energy, 2004, 29(7): 759-770. |
| [84] | Jang D, Cho H S, Kang S. Numerical modeling and analysis of the effect of pressure on the performance of an alkaline water electrolysis system[J]. Applied Energy, 2021, 287: 116554. |
| [85] | Roy A, Watson S, Infield D. Comparison of electrical energy efficiency of atmospheric and high-pressure electrolysers[J]. International Journal of Hydrogen Energy, 2006, 31(14): 1964-1979. |
| [86] | Lee J W, Lee J H, Lee C, et al. Cellulose nanocrystals-blended zirconia/polysulfone composite separator for alkaline electrolyzer at low electrolyte contents[J]. Chemical Engineering Journal, 2022, 428: 131149. |
| [87] | Schalenbach M, Lueke W, Stolten D. Hydrogen diffusivity and electrolyte permeability of the zirfon PERL separator for alkaline water electrolysis[J]. Journal of the Electrochemical Society, 2016, 163(14): F1480-F1488. |
| [88] | Zhang C, Wang J Y, Ren Z B, et al. Wind-powered 250 kW electrolyzer for dynamic hydrogen production: a pilot study[J]. International Journal of Hydrogen Energy, 2021, 46(70): 34550-34564. |
| [89] | Brauns J, Turek T. Alkaline water electrolysis powered by renewable energy: a review[J]. Processes, 2020, 8(2): 248. |
| [90] | Chi J, Yu H M. Water electrolysis based on renewable energy for hydrogen production[J]. Chinese Journal of Catalysis, 2018, 39(3): 390-394. |
| [91] | Dobó Z, Palotás Á B. Impact of the voltage fluctuation of the power supply on the efficiency of alkaline water electrolysis[J]. International Journal of Hydrogen Energy, 2016, 41(28): 11849-11856. |
| [92] | Ursúa A, San Martín I, Barrios E L, et al. Stand-alone operation of an alkaline water electrolyser fed by wind and photovoltaic systems[J]. International Journal of Hydrogen Energy, 2013, 38(35): 14952-14967. |
| [93] | 苏昕. 输入功率波动条件下PEM电解制氢性能研究[D]. 乌鲁木齐: 新疆农业大学, 2023. |
| Su X. Study on hydrogen production performance of PEM electrolysis under input power fluctuation[D]. Urumqi: Xinjiang Agricultural University, 2023. | |
| [94] | 沈小军, 聂聪颖, 吕洪. 计及电热特性的离网型风电制氢碱性电解槽阵列优化控制策略[J]. 电工技术学报, 2021, 36(3): 463-472. |
| Shen X J, Nie C Y, Lv H. Coordination control strategy of wind power-hydrogen alkaline electrolyzer bank considering electrothermal characteristics[J]. Transactions of China Electrotechnical Society, 2021, 36(3): 463-472. | |
| [95] | 宁楠. 水电解制氢装置宽功率波动适应性研究[J]. 舰船科学技术, 2017, 39(11): 133-136. |
| Ning N. Research on hydrogen generation system by water electrolysis under wide power fluctuation[J]. Ship Science and Technology, 2017, 39(11): 133-136. | |
| [96] | Zhou Y J, Zhang H, Liu L X, et al. Effect of electrolyte circulation on hydrogen-in-oxygen in alkaline water electrolysis[J]. International Journal of Hydrogen Energy, 2024, 82: 143-149. |
| [1] | Biao FENG, Zhao ZHANG, Siqi LI, Bingrui WANG, Hongying WU, Miao SHI, Dan WANG, Suxia MA. Performance of flame retardant for environmentally friendly refrigerant R290 [J]. CIESC Journal, 2025, 76(S1): 462-468. |
| [2] | Huihui QIAN, Wenjie WANG, Wenyao CHEN, Xinggui ZHOU, Jing ZHANG, Xuezhi DUAN. Synergistic metal-zeolite catalysis for conversion of polypropylene into aromatics [J]. CIESC Journal, 2025, 76(9): 4838-4849. |
| [3] | Wei ZHAO, Wenle XING, Zhaoxu HAN, Xingzhong YUAN, Longbo JIANG. Progress of g-C3N4-based metal-free heterojunction photocatalytic degradation of organic pollutants in water [J]. CIESC Journal, 2025, 76(9): 4752-4769. |
| [4] | Lili TONG, Ying CHEN, Minhua AI, Yumei SHU, Xiangwen ZHANG, Jijun ZOU, Lun PAN. ZnO/WO3 heterojunction modulated [2+2] photocycloaddition of cycloolefins for high-energy-density fuels production [J]. CIESC Journal, 2025, 76(9): 4882-4892. |
| [5] | Xiayu FAN, Jianchen SUN, Keying LI, Xinya YAO, Hui SHANG. Machine learning drives system optimization of liquid organic hydrogen storage technology [J]. CIESC Journal, 2025, 76(8): 3805-3821. |
| [6] | Ning YANG, Haonan LI, Xiao LIN, Stella GEORGIADOU, Wen-Feng LIN. Application of plastic-derived carbon@CoMoO4 composites as an efficient electrocatalyst for hydrogen evolution reaction in water electrolysis [J]. CIESC Journal, 2025, 76(8): 4081-4094. |
| [7] | Xinyi CHAO, Wenyao CHEN, Jing ZHANG, Gang QIAN, Xinggui ZHOU, Xuezhi DUAN. Controlled preparation and performance regulation of catalysts for one-step synthesis of methyl propionate from methanol and methyl acetate [J]. CIESC Journal, 2025, 76(8): 4030-4041. |
| [8] | Shiying ZHAO, Zhishuai ZUO, Mengying HE, Hualiang AN, Xinqiang ZHAO, Yanji WANG. Preparation of Co-Pt/HAP catalyst and its catalytic performance for 1,2-propanediol amination [J]. CIESC Journal, 2025, 76(7): 3305-3315. |
| [9] | Xuerui LU, Guoyan ZHOU, Qi FANG, Mengzheng YU, Xiucheng ZHANG, Shandong TU. Numerical study on the carbon deposition effect in external reformer of solid oxide fuel cells [J]. CIESC Journal, 2025, 76(7): 3295-3304. |
| [10] | Bolong LI, Yuxi JIANG, Aotian REN, Wenqi QIN, Jie FU, Xiuyang LYU. Study on continuous alcoholysis of fructose to methyl lactate over TS-1 and In-TS-1 [J]. CIESC Journal, 2025, 76(6): 2678-2686. |
| [11] | Jinbo JIANG, Zhuxin CHEN, Yangyi XIAO, Xin PENG, Yuan CHEN, Chen YU, Xiangkai MENG, Xudong PENG. Study on influence of operating conditions on thermodynamic process and steady state performance of supercritical CO2 dry gas seal [J]. CIESC Journal, 2025, 76(6): 2913-2928. |
| [12] | Jun HE, Yong LI, Nan ZHAO, Xiaojun HE. Study on the properties of carbon with Se doping cobalt sulfide in lithium-sulfur batteries [J]. CIESC Journal, 2025, 76(6): 2995-3008. |
| [13] | Fenhong SONG, Wenguang WANG, Liang GUO, Jing FAN. Modulation of TiO2 by C-element modified g-C3N4 and photocatalytic hydrogen production performance of composites [J]. CIESC Journal, 2025, 76(6): 2983-2994. |
| [14] | Yujie MAO, Xiaofei LU, Xian SUO, Lifeng YANG, Xili CUI, Huabin XING. Advances in research on catalysts for deep removal of trace oxygen in industrial gases [J]. CIESC Journal, 2025, 76(5): 1997-2010. |
| [15] | Minggang GUO, Xiaohang YANG, Yan DAI, Panpan MI, Shixin MA, Gaohong HE, Wu XIAO, Fujun CUI. Optimal design of integration process for helium extraction from helium-poor pipeline natural gas with diversified products [J]. CIESC Journal, 2025, 76(5): 2251-2261. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||