CIESC Journal ›› 2025, Vol. 76 ›› Issue (10): 4961-4975.DOI: 10.11949/0438-1157.20250387

• Reviews and monographs • Previous Articles     Next Articles

Research progress on safety of hydrogen production by alkaline electrolysis of water

Yi LI1(), Jiyuan WANG1, Xuhai PAN1,2(), Zhilei WANG1,2(), Min HUA1   

  1. 1.College of Safety Science and Engineering, Nanjing Tech University, Nanjing 211800, Jiangsu, China
    2.Engineering Laboratory of Hydrogen Safety Technology, Nanjing 211800, Jiangsu, China
  • Received:2025-04-13 Revised:2025-05-07 Online:2025-11-25 Published:2025-10-25
  • Contact: Xuhai PAN, Zhilei WANG

碱性电解水制氢安全研究进展

李怡1(), 王纪元1, 潘旭海1,2(), 汪志雷1,2(), 华敏1   

  1. 1.南京工业大学安全科学与工程学院,江苏 南京 211800
    2.石化行业氢安全技术工程实验室,江苏 南京 211800
  • 通讯作者: 潘旭海,汪志雷
  • 作者简介:李怡(2001—),女,硕士研究生,202361201129@njtech.edu.cn
  • 基金资助:
    国家重点研发计划政府间国际科技创新合作项目(2023YFE0199100)

Abstract:

The alkaline electrolysis of water for hydrogen production technology still poses risks of component corrosion, pipeline structural degradation, and hydrogen oxygen mixing and leakage during large-scale application, posing a threat to system operation safety. By analyzing the structural composition and working mechanism of the alkaline electrolysis water hydrogen production system, the key components and reasons affecting the safety of hydrogen production are identified. In response to the insufficient active sites and poor stability of electrode catalysts at high current densities, a method of using three-dimensional electrode structure design or constructing hydrophilic and hydrophobic interfaces is proposed. There is an urgent need to develop high-performance membrane materials to address the risk of hydrogen oxygen mixing caused by insufficient hydrophilicity and mechanical strength defects in membrane materials. The study also revealed the impact mechanism of various operating parameters and fluctuation conditions on gas purity, pointing out the shortcomings of current methods for improving gas purity by adjusting a single parameter. It provides theoretical support for the safety of large-scale industrial alkaline water electrolysis to produce hydrogen.

Key words: gas purity, catalyst, membranes, permeation, explosions, operating parameters

摘要:

碱性电解水制氢技术在规模化应用过程中仍存在组件腐蚀、管道结构劣化等可能引发氢氧混合和氢气泄漏的风险,对系统运行安全构成威胁。通过分析碱性电解水制氢系统的结构组成和工作机理,识别出影响制氢安全的关键组件和原因。针对电极催化剂在高电流密度下活性位点不足和稳定性差的问题,提出采用三维电极结构设计或者构筑亲水疏气界面的方法。对于隔膜材料因亲水性不足和机械强度缺陷引发的氢氧混合风险,亟需开发性能优异的隔膜材料。本文还揭示了各操作参数和波动工况对气体纯度的影响机理,指出当前通过调整单一参数提高气体纯度方法的不足。为工业大规模碱性电解水制氢安全提供理论支撑。

关键词: 气体纯度, 催化剂, 膜, 渗透, 爆炸, 操作参数

CLC Number: