CIESC Journal ›› 2015, Vol. 66 ›› Issue (1): 326-332.DOI: 10.11949/j.issn.0438-1157.20141473

Previous Articles     Next Articles

Optimization of xylene adsorption separation process based on multi-objective teaching-learning-based optimization algorithm

HU Rong, YANG Minglei, QIAN Feng   

  1. Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
  • Received:2014-09-28 Revised:2014-10-08 Online:2015-01-05 Published:2015-01-05
  • Supported by:

    supported by the National Basic Research Program of China (2012CB720500), the National Natural Science Foundation of China (U1162202, 21206037), the National High Technology Research and Development Program of China (2013AA040701), the Postdoctoral Science Foundation of China (2013M531143), the Fundamental Research Funds for the Central Universities and the Shanghai“Technology Innovation Action Plan”Development Platform for Building Projects (13DZ2295300).

基于多目标教学优化算法在二甲苯吸附分离过程优化中的应用

胡蓉, 杨明磊, 钱锋   

  1. 华东理工大学化工过程先进控制和优化技术教育部重点实验室, 上海 200237
  • 通讯作者: 钱锋
  • 基金资助:

    国家重点基础研究发展计划项目(2012CB720500);国家自然科学基金项目(U1162202, 21206037);国家高技术研究发展计划项目(2013AA040701);中国博士后基金项目(2013M531143);中央高校基本科研业务费专项资金;上海市“科技创新行动计划”研发平台建设项(13DZ2295300)。

Abstract:

Multi-objective teaching-learning-base optimization (MOTLBO) algorithm has been employed to investigate the multi-objective optimization problem of simulated moving bed chromatography separation for the recovery of p-xylene from a mixture of C8 aromatics. The separation process was simulated using true moving bed (TMB) modeling strategy. Based on the MOTLBO algorithm, the optimal operation conditions are designed for two typical multi-objective optimization problems. Comparing with NSGA-Ⅱ, the MOTLBO algorithm has been verified to be more efficient in solving the multi-objective optimization problem of simulated moving bed. In addition, The influences of the extract flow rate, the raffinate flow rate and the switching time on the pareto optimal solutions were also analyzed. The optimization can facilitate the design and operation of simulated moving bed.

Key words: simulated moving bed, MOTLBO algorithm, multi-objective, optimization design

摘要:

以C8芳烃混合物的吸附分离过程作为研究对象, 应用多目标教学优化算法(multi-objective teaching-learning-based optimization algorithm, MOTLBO)对模拟移动床多目标优化问题进行求解。采用TMB方法, 建立了模拟移动床模型, 并对两个典型的模拟移动床多目标操作优化问题进行了优化设计。通过与NSGA-Ⅱ算法的比较, 证明了多目标教学优化算法在求解模拟移动床多目标优化问题上的有效性和优势。此外, 还分析了抽出液流量、抽余液流量以及步进时间等对多目标优化非劣解的影响, 优化结果为模拟移动床分离过程的工艺设计和操作提供了依据。

关键词: 模拟移动床, 多目标教学优化算法, 多目标, 优化设计

CLC Number: