CIESC Journal ›› 2016, Vol. 67 ›› Issue (4): 1333-1339.DOI: 10.11949/j.issn.0438-1157.20151297

Previous Articles     Next Articles

Hydrogenation mechanisms of cinnamaldehyde over M13(M=Au, Pt) clusters

CAO Genting1, XUE Jilong2, XIAO Xuechun2, NI Zheming2   

  1. 1. Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, Zhejiang, China;
    2. College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
  • Received:2015-08-12 Revised:2015-11-24 Online:2016-04-05 Published:2016-04-05
  • Supported by:

    supported by the Natural Science Foundation of Zhejiang Province(LQ15B030002).

肉桂醛在M13(M=Au,Pt)团簇表面加氢反应机理分析

曹根庭1, 薛继龙2, 肖雪春2, 倪哲明2   

  1. 1. 浙江海洋学院海洋科学与技术学院, 浙江 舟山 316004;
    2. 浙江工业大学化学工程学院, 浙江 杭州 310014
  • 通讯作者: 倪哲明
  • 基金资助:

    浙江省自然科学基金项目(LQ15B030002)。

Abstract:

The selective hydrogenation reaction mechanisms (C=O addition mechanism, C=C addition mechanism, and 1,4-conjugate addition mechanism) of cinnamaldehyde over M13(M=Au, Pt) were investigated using density functional theory. The transition states of each elementary reaction step in selective hydrogenation of cinnamaldehyde were explored by the complete LST/QST method on the basis of optimized stable adsorption configurations, hence the activation energy and reaction heat were obtained. The calculation results showed that on Au13 cluster, cinnamaldehyde most likely follows 1,4-conjugate addition mechanism to produce very unstable ENOL, and tautomerizes to benzenepropanal(HCAL), of which the total hydrogenation process is almost exothermic. However, on Pt13 cluster, it most likely follows the C=O addition mechanism to generate cinnamyl alcohol(COL) followed by further hydrogenation to saturated alcohols, of which the total hydrogenation process is almost endothermic.

Key words: cinnamaldehyde, M13 cluster, density functional theory, hydrogenation

摘要:

采用密度泛函理论系统地研究了肉桂醛在正二十面体M13(M=Au,Pt)团簇上的选择性加氢反应机理(C=O,C=C以及1,4共轭加成机理)。在稳定吸附构型的基础上,通过Complete LST/QST方法探索肉桂醛选择性加氢反应中各基元反应的过渡态,得到各反应的活化能和反应热。计算结果表明:肉桂醛在Au13团簇最可能发生1,4共轭加成得到烯醇,但烯醇很不稳定,会发生异构生成苯丙醛,反应总体放出热量;肉桂醛在Pt13团簇最可能发生C=O加成得到肉桂醇,肉桂醇进一步加氢得到饱和醇,反应总体吸收热量。

关键词: 肉桂醛, M13团簇, 密度泛函理论, 加氢

CLC Number: